Menu Close

Question-222753




Question Number 222753 by mr W last updated on 06/Jul/25
Answered by A5T last updated on 07/Jul/25
Let θ be the base angle of any of the isosceles △  180−2θ+180−(2(180−θ−?))+90=180  ⇒2?=90⇒?=45°
$$\mathrm{Let}\:\theta\:\mathrm{be}\:\mathrm{the}\:\mathrm{base}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{any}\:\mathrm{of}\:\mathrm{the}\:\mathrm{isosceles}\:\bigtriangleup \\ $$$$\mathrm{180}−\mathrm{2}\theta+\mathrm{180}−\left(\mathrm{2}\left(\mathrm{180}−\theta−?\right)\right)+\mathrm{90}=\mathrm{180} \\ $$$$\Rightarrow\mathrm{2}?=\mathrm{90}\Rightarrow?=\mathrm{45}° \\ $$
Commented by mr W last updated on 07/Jul/25
��
Answered by fantastic last updated on 07/Jul/25
Commented by fantastic last updated on 07/Jul/25
λ=180^0 −2θ  ψ=180^0 −(90^0 +λ)=90^0 −180^0 +2θ=2θ−90^0   α=((180^0 +90^0 −2θ)/2)=((270^0 −2θ)/2)=135^0 −θ  β=180^0 −(α+θ)=180^0 −(135^0 −θ+θ)=180^0 −135^0 =45^0 ✓
$$\lambda=\mathrm{180}^{\mathrm{0}} −\mathrm{2}\theta \\ $$$$\psi=\mathrm{180}^{\mathrm{0}} −\left(\mathrm{90}^{\mathrm{0}} +\lambda\right)=\mathrm{90}^{\mathrm{0}} −\mathrm{180}^{\mathrm{0}} +\mathrm{2}\theta=\mathrm{2}\theta−\mathrm{90}^{\mathrm{0}} \\ $$$$\alpha=\frac{\mathrm{180}^{\mathrm{0}} +\mathrm{90}^{\mathrm{0}} −\mathrm{2}\theta}{\mathrm{2}}=\frac{\mathrm{270}^{\mathrm{0}} −\mathrm{2}\theta}{\mathrm{2}}=\mathrm{135}^{\mathrm{0}} −\theta \\ $$$$\beta=\mathrm{180}^{\mathrm{0}} −\left(\alpha+\theta\right)=\mathrm{180}^{\mathrm{0}} −\left(\mathrm{135}^{\mathrm{0}} −\theta+\theta\right)=\mathrm{180}^{\mathrm{0}} −\mathrm{135}^{\mathrm{0}} =\mathrm{45}^{\mathrm{0}} \checkmark \\ $$
Commented by mr W last updated on 07/Jul/25
��
Answered by mr W last updated on 07/Jul/25
Commented by mr W last updated on 07/Jul/25
?=x=α+β=((2α+2β)/2)=((90°)/2)=45°
$$?={x}=\alpha+\beta=\frac{\mathrm{2}\alpha+\mathrm{2}\beta}{\mathrm{2}}=\frac{\mathrm{90}°}{\mathrm{2}}=\mathrm{45}° \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *