Question Number 222927 by MrGaster last updated on 11/Jul/25

$$\int\int\int_{{V}} \bigtriangledown\centerdot\boldsymbol{\mathrm{F}}{dV}=\int\int_{\partial{V}} \boldsymbol{\mathrm{F}}\centerdot\mathrm{d}\boldsymbol{{S}} \\ $$$$\boldsymbol{\mathrm{F}}=−\bigtriangledown\phi \\ $$$$\bigtriangledown\centerdot\left(−\bigtriangledown\phi\right)=−\bigtriangledown^{\mathrm{2}} \phi \\ $$$$\int\int\int_{{V}} \left(−\bigtriangledown^{\mathrm{2}} \phi\right){dV}=\int\int_{\partial{V}} \left(−\bigtriangledown\phi\right)\centerdot\mathrm{d}\boldsymbol{{S}} \\ $$$$−\int\int\int_{{V}} \bigtriangledown^{\mathrm{2}} \phi\mathrm{d}{V}=−\int\int_{\partial{V}} \bigtriangledown\phi\centerdot{d}\boldsymbol{{S}} \\ $$$$\int\int\int_{{V}} \bigtriangledown^{\mathrm{2}} \phi{dV}=\int\int_{\partial{V}} \bigtriangledown\phi\centerdot{d}\boldsymbol{{S}} \\ $$$$\rho\left(\boldsymbol{{r}}\right)=\underset{{i}} {\sum}{q}_{{i}} \delta^{\left(\mathrm{3}\right)} −\left(\boldsymbol{{r}}−\boldsymbol{{r}}_{{i}} \right) \\ $$$$\bigtriangledown^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mid\boldsymbol{{r}}−\boldsymbol{{r}}'\mid}\right)=−\mathrm{4}\pi\delta^{\left(\mathrm{3}\right)} \left(\boldsymbol{\mathrm{r}}−\boldsymbol{\mathrm{r}}'\right) \\ $$$$\phi\left(\boldsymbol{\mathrm{r}}\right)=\int\int\int_{{V}} \frac{\rho\left(\boldsymbol{\mathrm{r}}'\right)}{\mathrm{4}\pi\mid\boldsymbol{\mathrm{r}}−\boldsymbol{\mathrm{r}}'\mid}{dV}' \\ $$$$\bigtriangledown^{\mathrm{2}} \phi=\bigtriangledown^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}\pi}\int\int\int_{{V}} \frac{\rho\left(\boldsymbol{\mathrm{r}}'\right)}{\mid\boldsymbol{\mathrm{r}}−\boldsymbol{\mathrm{r}}'\mid}{dV}'\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\pi}\int\int\int_{{V}} \rho\left(\boldsymbol{\mathrm{r}}'\right)\bigtriangledown^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mid\boldsymbol{\mathrm{r}}−\boldsymbol{\mathrm{r}}'\mid}\right){dV}' \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\pi}\int\int\int_{{V}} \rho\left(\boldsymbol{\mathrm{r}}'\right)\left(−\mathrm{4}\pi\delta^{\left(\mathrm{3}\right)} \left(\boldsymbol{\mathrm{r}}−\boldsymbol{\mathrm{r}}'\right)\right)\mathrm{d}{V}' \\ $$$$=−\int\int\int_{{V}} \rho\left(\boldsymbol{\mathrm{r}}'\right)\delta^{\left(\mathrm{3}\right)} \left(\boldsymbol{\mathrm{r}}−\boldsymbol{\mathrm{r}}'\right){dV}' \\ $$$$=−\rho\left(\boldsymbol{\mathrm{r}}\right) \\ $$$$\bigtriangledown^{\mathrm{2}} \phi=−\rho \\ $$