Question Number 223007 by Nicholas666 last updated on 12/Jul/25

$$ \\ $$$$\:\:\:\:\:\:\mathrm{everyone}\:\mathrm{or}\:\mathrm{Mr}.\:\mathrm{Gaster}\:! \\ $$$$\:\:\:\:\:\:\:\mathrm{Please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{how}\:\mathrm{to}\:\mathrm{sove}\:\mathrm{the}\:\mathrm{integral}\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{Because}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{is}\:\mathrm{very}\:\mathrm{crazy}\:\mathrm{or}\:\mathrm{very}\:\mathrm{Complicated} \\ $$$$\:\:\:\:\:\:\mathrm{Problem}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{ln}\left({x}−\mathrm{1}\right)\:\mathrm{ln}\left({x}+\mathrm{1}\right)\:\mathrm{ln}\:\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\:\mathrm{d}{x}\:=??? \\ $$$$ \\ $$
Commented by Nicholas666 last updated on 12/Jul/25

$$\:\mathrm{the}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{this}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{very}\:\mathrm{complex},\:\:\:\:\: \\ $$$$\:\:\:\mathrm{I}'\mathrm{m}\:\mathrm{just}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{a}\:\mathrm{more}\:\mathrm{elegant}\:\mathrm{solution}\: \\ $$$$\:\:\:\mathrm{than}\:\mathrm{the}\:\mathrm{one}\:\mathrm{I}\:\mathrm{found}. \\ $$$$ \\ $$
Commented by MrGaster last updated on 12/Jul/25
If the numerical results can be converted into analytical solutions and become proof problems, it will be very simple for me.
Commented by Nicholas666 last updated on 13/Jul/25

$$\:\mathrm{nice},\:\mathrm{can}\:\mathrm{you}\:\mathrm{show}\:\mathrm{it}? \\ $$$$ \\ $$
Commented by Nicholas666 last updated on 13/Jul/25

$$\:\mathrm{can}\:\mathrm{you}\:\mathrm{show}\:\mathrm{analytical}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{this}\:\mathrm{problem}\:\mathrm{sir}? \\ $$
Commented by Nicholas666 last updated on 13/Jul/25

$$\:\mathrm{tab}\:\mathrm{here}\:{Q}.\mathrm{222411} \\ $$
Commented by Tawa11 last updated on 08/Oct/25

$$\mathrm{Sir}, \\ $$$$\mathrm{please}\:\mathrm{show}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{you}\:\mathrm{found}. \\ $$