Question Number 223006 by mnjuly1970 last updated on 12/Jul/25

$$ \\ $$$$\:\:\:\:\:\:\:\:\mathscr{L}\:\:\left\{\:{tsin}\left(\sqrt{{t}}\:\right)\right\}=? \\ $$
Answered by MrGaster last updated on 12/Jul/25

$$\mathscr{L}\:\:\left\{\:{tsin}\left(\sqrt{{t}}\:\right)\right\}=\int_{\mathrm{0}} ^{\infty} {e}^{−{st}} {t}\:\mathrm{sin}\left(\sqrt{{t}}\right){dt} \\ $$$$\mathrm{sin}\left(\sqrt{{t}}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \left(\sqrt{{t}}\right)^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {t}^{{n}+\frac{\mathrm{1}}{\mathrm{2}}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$${t}\:\mathrm{sin}\left(\sqrt{{t}}\right)={t}\centerdot\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {t}^{{n}+\frac{\mathrm{1}}{\mathrm{2}}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {t}^{{n}+\frac{\mathrm{3}}{\mathrm{2}}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)!} \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{st}} {t}^{{n}+\frac{\mathrm{3}}{\mathrm{2}}} {dt}=\Gamma\left({n}+\frac{\mathrm{5}}{\mathrm{2}}\right){s}^{−\left({n}+\frac{\mathrm{5}}{\mathrm{2}}\right)} \\ $$$$\frac{\Gamma\left({n}+\frac{\mathrm{5}}{\mathrm{2}}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right)!}=\frac{\sqrt{\pi}\left(\mathrm{2}{n}+\mathrm{3}\right)}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{2}} {n}!} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\Gamma\left({n}+\frac{\mathrm{5}}{\mathrm{2}}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\Gamma\left({n}+\frac{\mathrm{5}}{\mathrm{2}}\right){s}^{−\left({n}+\frac{\mathrm{5}}{\mathrm{2}}\right)} =\frac{\sqrt{\pi}}{\mathrm{4}{s}^{\frac{\mathrm{5}}{\mathrm{2}}} }\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \left(\mathrm{2}{n}+\mathrm{3}\right)}{{n}!}\left(\frac{\mathrm{1}}{\mathrm{4}{s}}\right)^{{n}} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}{n}+\mathrm{3}\right)}{{n}!}{z}^{{n}} =\left(\mathrm{3}+\mathrm{2}{z}\right){e}^{{z}} ,{z}=−\frac{\mathrm{1}}{\mathrm{4}{s}} \\ $$$$\frac{\sqrt{\pi}}{\mathrm{4}{s}^{\frac{\mathrm{5}}{\mathrm{2}}} }\left(\mathrm{3}−\frac{\mathrm{1}}{\mathrm{2}{s}}\right){e}^{−\frac{\mathrm{1}}{\mathrm{4}{s}}} =\frac{\sqrt{\pi}\left(\mathrm{6}{s}−\mathrm{1}\right)}{\mathrm{8}{s}^{\frac{\mathrm{7}}{\mathrm{2}}} }{e}^{−\frac{\mathrm{1}}{\mathrm{4}{s}}} \\ $$
Commented by mnjuly1970 last updated on 12/Jul/25

$$\: \\ $$