Menu Close

Question-223066




Question Number 223066 by fantastic last updated on 13/Jul/25
Commented by fantastic last updated on 13/Jul/25
Area of semicircle in terms of a and b
$${Area}\:{of}\:{semicircle}\:{in}\:{terms}\:{of}\:{a}\:{and}\:{b} \\ $$$$ \\ $$
Answered by mr W last updated on 13/Jul/25
Commented by mr W last updated on 14/Jul/25
Commented by mr W last updated on 14/Jul/25
(x/z)=(a/b)  xz=(x+z+(√(x^2 +z^2 )))a  ⇒x=a+(a^2 /b)+(a/b)(√(a^2 +b^2 ))  similarly  ⇒y=b+(b^2 /a)+(b/a)(√(a^2 +b^2 ))  R=((x+y)/2)=((a+b)/2)+((a^3 +b^3 +(a^2 +b^2 )(√(a^2 +b^2 )))/(2ab))
$$\frac{{x}}{{z}}=\frac{{a}}{{b}} \\ $$$${xz}=\left({x}+{z}+\sqrt{{x}^{\mathrm{2}} +{z}^{\mathrm{2}} }\right){a} \\ $$$$\Rightarrow{x}={a}+\frac{{a}^{\mathrm{2}} }{{b}}+\frac{{a}}{{b}}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${similarly} \\ $$$$\Rightarrow{y}={b}+\frac{{b}^{\mathrm{2}} }{{a}}+\frac{{b}}{{a}}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${R}=\frac{{x}+{y}}{\mathrm{2}}=\frac{{a}+{b}}{\mathrm{2}}+\frac{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\mathrm{2}{ab}} \\ $$
Commented by mr W last updated on 13/Jul/25
((xz)/2)=a ⇒x=((2a)/z)  ((yz)/2)=b ⇒y=((2b)/z)  z^2 =xy=((4ab)/z^2 ) ⇒z=(√(2(√(ab))))  R=((x+y)/2)=((a+b)/z)=((a+b)/( (√(2(√(ab))))))  area of semi circle =((πR^2 )/2)=((π(a+b)^2 )/( (√(4ab))))
$$\frac{{xz}}{\mathrm{2}}={a}\:\Rightarrow{x}=\frac{\mathrm{2}{a}}{{z}} \\ $$$$\frac{{yz}}{\mathrm{2}}={b}\:\Rightarrow{y}=\frac{\mathrm{2}{b}}{{z}} \\ $$$${z}^{\mathrm{2}} ={xy}=\frac{\mathrm{4}{ab}}{{z}^{\mathrm{2}} }\:\Rightarrow{z}=\sqrt{\mathrm{2}\sqrt{{ab}}} \\ $$$${R}=\frac{{x}+{y}}{\mathrm{2}}=\frac{{a}+{b}}{{z}}=\frac{{a}+{b}}{\:\sqrt{\mathrm{2}\sqrt{{ab}}}} \\ $$$${area}\:{of}\:{semi}\:{circle}\:=\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}}=\frac{\pi\left({a}+{b}\right)^{\mathrm{2}} }{\:\sqrt{\mathrm{4}{ab}}} \\ $$
Commented by fantastic last updated on 14/Jul/25
thanks sir
$${thanks}\:{sir} \\ $$
Commented by fantastic last updated on 14/Jul/25
thanks sir.
$${thanks}\:{sir}. \\ $$
Commented by fantastic last updated on 14/Jul/25
now solve for the same thing if  the areas of two circles inscribed  in that right triangle is given
$${now}\:{solve}\:{for}\:{the}\:{same}\:{thing}\:{if} \\ $$$${the}\:{areas}\:{of}\:{two}\:{circles}\:{inscribed} \\ $$$${in}\:{that}\:{right}\:{triangle}\:{is}\:{given} \\ $$
Commented by fantastic last updated on 14/Jul/25
they must not touch each other
$${they}\:{must}\:{not}\:{touch}\:{each}\:{other} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *