Menu Close

Question-223125




Question Number 223125 by BaliramKumar last updated on 15/Jul/25
Answered by mr W last updated on 16/Jul/25
A needs 85s for one round,  B needs 45s for one round.  case 1: they run in opposite directions  say they meet after time t for the  n^(th)  time  (t/(85))+(t/(45))=n  ⇒t=((765n)/(26))  position of A:  (1/(85))×((765n)/(26))=((9n)/(26)) ⇒26 different points  ⇒answer 3)    case 2: they run in same direction  (t/(45))−(t/(85))=n  ⇒t=((765n)/8)  position of A:  (1/(85))×((765n)/8)=((9n)/8) ⇒8 different points
$${A}\:{needs}\:\mathrm{85}{s}\:{for}\:{one}\:{round}, \\ $$$${B}\:{needs}\:\mathrm{45}{s}\:{for}\:{one}\:{round}. \\ $$$${case}\:\mathrm{1}:\:{they}\:{run}\:{in}\:{opposite}\:{directions} \\ $$$${say}\:{they}\:{meet}\:{after}\:{time}\:{t}\:{for}\:{the} \\ $$$${n}^{{th}} \:{time} \\ $$$$\frac{{t}}{\mathrm{85}}+\frac{{t}}{\mathrm{45}}={n} \\ $$$$\Rightarrow{t}=\frac{\mathrm{765}{n}}{\mathrm{26}} \\ $$$${position}\:{of}\:{A}: \\ $$$$\frac{\mathrm{1}}{\mathrm{85}}×\frac{\mathrm{765}{n}}{\mathrm{26}}=\frac{\mathrm{9}{n}}{\mathrm{26}}\:\Rightarrow\mathrm{26}\:{different}\:{points} \\ $$$$\left.\Rightarrow{answer}\:\mathrm{3}\right) \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:{they}\:{run}\:{in}\:{same}\:{direction} \\ $$$$\frac{{t}}{\mathrm{45}}−\frac{{t}}{\mathrm{85}}={n} \\ $$$$\Rightarrow{t}=\frac{\mathrm{765}{n}}{\mathrm{8}} \\ $$$${position}\:{of}\:{A}: \\ $$$$\frac{\mathrm{1}}{\mathrm{85}}×\frac{\mathrm{765}{n}}{\mathrm{8}}=\frac{\mathrm{9}{n}}{\mathrm{8}}\:\Rightarrow\mathrm{8}\:{different}\:{points} \\ $$
Commented by BaliramKumar last updated on 16/Jul/25
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *