Menu Close

Question-223124




Question Number 223124 by Jubr last updated on 15/Jul/25
Answered by fantastic last updated on 15/Jul/25
Commented by fantastic last updated on 15/Jul/25
EB=x(√2)=EC  AB=(√((x(√2))^2 −8^2 ))=(√(2x^2 −8^2 ))  CD=(√((x(√2))^2 −6^2 ))=(√(2x^2 −6^2 ))  △ABE∼△CDE  (8/( (√(2x^2 −6^2 ))))=(6/( (√(2x^2 −8^2 ))))  or (4/3)=((√(2x^2 −6^2 ))/( (√(2x^2 −8^2 ))))  or ((16)/9)=((2x^2 −6^2 )/(2x^2 −8^2 ))  or ((16)/9)=((x^2 −18)/(x^2 −32))  or 16x^2 −16×32=9x^2 −9×18  or 7x^2 =350  x^2 =50  x=(√(50))=5(√2)
$${EB}={x}\sqrt{\mathrm{2}}={EC} \\ $$$${AB}=\sqrt{\left({x}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} }=\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} } \\ $$$${CD}=\sqrt{\left({x}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} }=\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} } \\ $$$$\bigtriangleup{ABE}\sim\bigtriangleup{CDE} \\ $$$$\frac{\mathrm{8}}{\:\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} }}=\frac{\mathrm{6}}{\:\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} }} \\ $$$${or}\:\frac{\mathrm{4}}{\mathrm{3}}=\frac{\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} }}{\:\sqrt{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} }} \\ $$$${or}\:\frac{\mathrm{16}}{\mathrm{9}}=\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} }{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} } \\ $$$${or}\:\frac{\mathrm{16}}{\mathrm{9}}=\frac{{x}^{\mathrm{2}} −\mathrm{18}}{{x}^{\mathrm{2}} −\mathrm{32}} \\ $$$${or}\:\mathrm{16}{x}^{\mathrm{2}} −\mathrm{16}×\mathrm{32}=\mathrm{9}{x}^{\mathrm{2}} −\mathrm{9}×\mathrm{18} \\ $$$${or}\:\mathrm{7}{x}^{\mathrm{2}} =\mathrm{350} \\ $$$${x}^{\mathrm{2}} =\mathrm{50} \\ $$$${x}=\sqrt{\mathrm{50}}=\mathrm{5}\sqrt{\mathrm{2}} \\ $$
Commented by Tawa11 last updated on 15/Jul/25
Sir, please how is the triangle similar?  I think they should have common vertex.  Just asking sir.
$$\mathrm{Sir},\:\mathrm{please}\:\mathrm{how}\:\mathrm{is}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{similar}? \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{they}\:\mathrm{should}\:\mathrm{have}\:\mathrm{common}\:\mathrm{vertex}. \\ $$$$\mathrm{Just}\:\mathrm{asking}\:\mathrm{sir}. \\ $$
Commented by fantastic last updated on 15/Jul/25
let ∡ABE=θ then ∡AEB=90^0 −θ  Now △BFE and△ECF are  iso celes triangles  ∡BEF=45^0 =∡CEF  So ∡BEC=45^0 +45^0 =90^0    So ∡DEC=180^0 −(90^0 −θ+90^0 )=θ  So ∡ABE=∡DEC  We have ∡A=∡D=90^0   So ∡ECD=90^0 −θ=∡AEB  So △AEB∼△CDE
$${let}\:\measuredangle{ABE}=\theta\:{then}\:\measuredangle{AEB}=\mathrm{90}^{\mathrm{0}} −\theta \\ $$$${Now}\:\bigtriangleup{BFE}\:{and}\bigtriangleup{ECF}\:{are}\:\:{iso}\:{celes}\:{triangles} \\ $$$$\measuredangle{BEF}=\mathrm{45}^{\mathrm{0}} =\measuredangle{CEF} \\ $$$${So}\:\measuredangle{BEC}=\mathrm{45}^{\mathrm{0}} +\mathrm{45}^{\mathrm{0}} =\mathrm{90}^{\mathrm{0}} \: \\ $$$${So}\:\measuredangle{DEC}=\mathrm{180}^{\mathrm{0}} −\left(\mathrm{90}^{\mathrm{0}} −\theta+\mathrm{90}^{\mathrm{0}} \right)=\theta \\ $$$${So}\:\measuredangle{ABE}=\measuredangle{DEC} \\ $$$${We}\:{have}\:\measuredangle{A}=\measuredangle{D}=\mathrm{90}^{\mathrm{0}} \\ $$$${So}\:\measuredangle{ECD}=\mathrm{90}^{\mathrm{0}} −\theta=\measuredangle{AEB} \\ $$$${So}\:\bigtriangleup{AEB}\sim\bigtriangleup{CDE} \\ $$
Commented by Tawa11 last updated on 16/Jul/25
I understand now sir. Thanks sir
$$\mathrm{I}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{sir}.\:\mathrm{Thanks}\:\mathrm{sir} \\ $$
Answered by mr W last updated on 15/Jul/25
Commented by mr W last updated on 15/Jul/25
x=(√(1^2 +7^2 ))=5(√2) ✓
$${x}=\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} }=\mathrm{5}\sqrt{\mathrm{2}}\:\checkmark \\ $$
Commented by Tawa11 last updated on 16/Jul/25
Very good method.
$$\mathrm{Very}\:\mathrm{good}\:\mathrm{method}. \\ $$
Answered by mr W last updated on 15/Jul/25
Commented by mr W last updated on 15/Jul/25
ΔABE≡ΔCED  AB=CE=6  ((√2)x)^2 =8^2 +6^2  ⇒x=5(√2) ✓
$$\Delta{ABE}\equiv\Delta{CED} \\ $$$${AB}={CE}=\mathrm{6} \\ $$$$\left(\sqrt{\mathrm{2}}{x}\right)^{\mathrm{2}} =\mathrm{8}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} \:\Rightarrow{x}=\mathrm{5}\sqrt{\mathrm{2}}\:\checkmark \\ $$
Commented by Tawa11 last updated on 16/Jul/25
Weldone sir.
$$\mathrm{Weldone}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *