Menu Close

x-x-i-number-of-solutions-




Question Number 223240 by fantastic last updated on 19/Jul/25
x^x =i  number of solutions??
$${x}^{{x}} ={i} \\ $$$${number}\:{of}\:{solutions}?? \\ $$
Answered by mr W last updated on 19/Jul/25
say x=re^(θi) =e^(ln r+θi) =r(cos θ+i sin θ)   with r, θ ∈R and r>0, −π≤θ≤π  x^x =(e^(ln r+θi) )^(r(cos θ+i sin θ)) =i  e^(r(ln r+θi)(cos θ+sin θ i)) =i  r(ln r+θi)(cos θ+sin θ i)=(2kπ+(π/2))i  (ln r cos θ−θ sin θ)+(ln r sin θ+θ cos θ)i=(2kπ+(π/2))(i/r)  ⇒ln r cos θ−θ sin θ=0  ⇒r=e^(θ tan θ)     ...(I)  ⇒ln r sin θ+θ cos θ=(1/r)(2kπ+(π/2))  ⇒θ(tan θ sin θ+cos θ)=(1/r)(2kπ+(π/2))  ⇒((θe^(θ tan θ) )/(cos θ))=2kπ+(π/2)   ...(II)  there are infinite solutions:  k=0:  θ≈−2.924419183667, r≈0.524514040555  θ≈0.688453227108, r≈1.761943269397  k=1:  θ≈0.984848720826, r≈4.409983637648  k=2:  θ≈1.058138711897, r≈6.553213447542  ......
$${say}\:{x}={re}^{\theta{i}} ={e}^{\mathrm{ln}\:{r}+\theta{i}} ={r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right)\: \\ $$$${with}\:{r},\:\theta\:\in{R}\:{and}\:{r}>\mathrm{0},\:−\pi\leqslant\theta\leqslant\pi \\ $$$${x}^{{x}} =\left({e}^{\mathrm{ln}\:{r}+\theta{i}} \right)^{{r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right)} ={i} \\ $$$${e}^{{r}\left(\mathrm{ln}\:{r}+\theta{i}\right)\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\:{i}\right)} ={i} \\ $$$${r}\left(\mathrm{ln}\:{r}+\theta{i}\right)\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\:{i}\right)=\left(\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{2}}\right){i} \\ $$$$\left(\mathrm{ln}\:{r}\:\mathrm{cos}\:\theta−\theta\:\mathrm{sin}\:\theta\right)+\left(\mathrm{ln}\:{r}\:\mathrm{sin}\:\theta+\theta\:\mathrm{cos}\:\theta\right){i}=\left(\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{2}}\right)\frac{{i}}{{r}} \\ $$$$\Rightarrow\mathrm{ln}\:{r}\:\mathrm{cos}\:\theta−\theta\:\mathrm{sin}\:\theta=\mathrm{0} \\ $$$$\Rightarrow{r}={e}^{\theta\:\mathrm{tan}\:\theta} \:\:\:\:…\left({I}\right) \\ $$$$\Rightarrow\mathrm{ln}\:{r}\:\mathrm{sin}\:\theta+\theta\:\mathrm{cos}\:\theta=\frac{\mathrm{1}}{{r}}\left(\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{2}}\right) \\ $$$$\Rightarrow\theta\left(\mathrm{tan}\:\theta\:\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\right)=\frac{\mathrm{1}}{{r}}\left(\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{2}}\right) \\ $$$$\Rightarrow\frac{\theta{e}^{\theta\:\mathrm{tan}\:\theta} }{\mathrm{cos}\:\theta}=\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{2}}\:\:\:…\left({II}\right) \\ $$$${there}\:{are}\:{infinite}\:{solutions}: \\ $$$${k}=\mathrm{0}: \\ $$$$\theta\approx−\mathrm{2}.\mathrm{924419183667},\:{r}\approx\mathrm{0}.\mathrm{524514040555} \\ $$$$\theta\approx\mathrm{0}.\mathrm{688453227108},\:{r}\approx\mathrm{1}.\mathrm{761943269397} \\ $$$${k}=\mathrm{1}: \\ $$$$\theta\approx\mathrm{0}.\mathrm{984848720826},\:{r}\approx\mathrm{4}.\mathrm{409983637648} \\ $$$${k}=\mathrm{2}: \\ $$$$\theta\approx\mathrm{1}.\mathrm{058138711897},\:{r}\approx\mathrm{6}.\mathrm{553213447542} \\ $$$$…… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *