Menu Close

OC-4-5-amp-EF-2-amp-DE-EC-amp-AC-2AF-AB-




Question Number 223286 by mehdee7396 last updated on 20/Jul/25
OC=4.5   &  EF=2  &  DE^⌢ =EC^⌢   &  AC=2AF⇒AB=?                               ⇓⇓⇓
$${OC}=\mathrm{4}.\mathrm{5}\:\:\:\&\:\:{EF}=\mathrm{2}\:\:\&\:\:{D}\overset{\frown} {{E}}={E}\overset{\frown} {{C}}\:\:\&\:\:{AC}=\mathrm{2}{AF}\Rightarrow{AB}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Downarrow\Downarrow\Downarrow \\ $$
Commented by fantastic last updated on 20/Jul/25
13??  Please tell me
$$\mathrm{13}?? \\ $$$${Please}\:{tell}\:{me} \\ $$
Commented by mehdee7396 last updated on 20/Jul/25
Commented by fantastic last updated on 20/Jul/25
Answered by mr W last updated on 20/Jul/25
Commented by mr W last updated on 21/Jul/25
DE=EC  ⇒OE⊥CD  ⇒∠COE=∠EOD=∠DOB=60°  AF=FC  ⇒O,E, F are collinear.  OF=4.5+2=6.5  ⇒AB=2×OF=2×6.5=13 ✓
$${DE}={EC} \\ $$$$\Rightarrow{OE}\bot{CD} \\ $$$$\cancel{\Rightarrow\angle{COE}=\angle{EOD}=\angle{DOB}=\mathrm{60}°} \\ $$$${AF}={FC} \\ $$$$\Rightarrow{O},{E},\:{F}\:{are}\:{collinear}. \\ $$$${OF}=\mathrm{4}.\mathrm{5}+\mathrm{2}=\mathrm{6}.\mathrm{5} \\ $$$$\Rightarrow{AB}=\mathrm{2}×{OF}=\mathrm{2}×\mathrm{6}.\mathrm{5}=\mathrm{13}\:\checkmark \\ $$
Commented by mehdee7396 last updated on 21/Jul/25
in the 3^(th)  line why  ?
$${in}\:{the}\:\mathrm{3}^{{th}} \:{line}\:{why}\:\:? \\ $$
Commented by A5T last updated on 21/Jul/25
I suppose we can′t actually deduce   ∠COE=∠EOD=∠DOB=60° just from the  information DE=EC and/or OE⊥CD.   We actually need more information to deduce   that.
$$\mathrm{I}\:\mathrm{suppose}\:\mathrm{we}\:\mathrm{can}'\mathrm{t}\:\mathrm{actually}\:\mathrm{deduce}\: \\ $$$$\angle\mathrm{COE}=\angle\mathrm{EOD}=\angle\mathrm{DOB}=\mathrm{60}°\:\mathrm{just}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{information}\:\mathrm{DE}=\mathrm{EC}\:\mathrm{and}/\mathrm{or}\:\mathrm{OE}\bot\mathrm{CD}.\: \\ $$$$\mathrm{We}\:\mathrm{actually}\:\mathrm{need}\:\mathrm{more}\:\mathrm{information}\:\mathrm{to}\:\mathrm{deduce}\: \\ $$$$\mathrm{that}. \\ $$
Commented by fantastic last updated on 21/Jul/25
I will  try to explain after some time  [I am also solving]
$${I}\:{will}\:\:{try}\:{to}\:{explain}\:{after}\:{some}\:{time} \\ $$$$\left[{I}\:{am}\:{also}\:{solving}\right] \\ $$
Commented by A5T last updated on 21/Jul/25
The exact value of any angle is not a necessity to  solve the question. I have a solution below.  In fact, we can only deduce ∠COE=∠EOD,  but it is not necessarily unique. And AB=2OF  will always be true for any ∠COE=∠EOD=θ.
$$\mathrm{The}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:\mathrm{any}\:\mathrm{angle}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{necessity}\:\mathrm{to} \\ $$$$\mathrm{solve}\:\mathrm{the}\:\mathrm{question}.\:\mathrm{I}\:\mathrm{have}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{below}. \\ $$$$\mathrm{In}\:\mathrm{fact},\:\mathrm{we}\:\mathrm{can}\:\mathrm{only}\:\mathrm{deduce}\:\angle\mathrm{COE}=\angle\mathrm{EOD}, \\ $$$$\mathrm{but}\:\mathrm{it}\:\mathrm{is}\:\mathrm{not}\:\mathrm{necessarily}\:\mathrm{unique}.\:\mathrm{And}\:\mathrm{AB}=\mathrm{2OF} \\ $$$$\mathrm{will}\:\mathrm{always}\:\mathrm{be}\:\mathrm{true}\:\mathrm{for}\:\mathrm{any}\:\angle\mathrm{COE}=\angle\mathrm{EOD}=\theta. \\ $$
Commented by mr W last updated on 21/Jul/25
i didn′t use line 3. it is not true and  not necessary.
$${i}\:{didn}'{t}\:{use}\:{line}\:\mathrm{3}.\:{it}\:{is}\:{not}\:{true}\:{and} \\ $$$${not}\:{necessary}. \\ $$
Answered by A5T last updated on 21/Jul/25
OF is parallel to AB, since ((CF)/(CA))=((CO)/(CB))=(1/2)  ⇒∠COF=∠CBD  Since DE=EC; ∠CBE=((∠CBD)/2)  ∠COE=2∠CBE=∠CBD  ⇒∠COE=∠COF ⇒O,E,F are collinear.  ((OF)/(AB))=(1/2)⇒AB=2OF=2(4.5+2)=13
$$\mathrm{OF}\:\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{AB},\:\mathrm{since}\:\frac{\mathrm{CF}}{\mathrm{CA}}=\frac{\mathrm{CO}}{\mathrm{CB}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\angle\mathrm{COF}=\angle\mathrm{CBD} \\ $$$$\mathrm{Since}\:\mathrm{DE}=\mathrm{EC};\:\angle\mathrm{CBE}=\frac{\angle\mathrm{CBD}}{\mathrm{2}} \\ $$$$\angle\mathrm{COE}=\mathrm{2}\angle\mathrm{CBE}=\angle\mathrm{CBD} \\ $$$$\Rightarrow\angle\mathrm{COE}=\angle\mathrm{COF}\:\Rightarrow\mathrm{O},\mathrm{E},\mathrm{F}\:\mathrm{are}\:\mathrm{collinear}. \\ $$$$\frac{\mathrm{OF}}{\mathrm{AB}}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\mathrm{AB}=\mathrm{2OF}=\mathrm{2}\left(\mathrm{4}.\mathrm{5}+\mathrm{2}\right)=\mathrm{13} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *