Question Number 223317 by fantastic last updated on 21/Jul/25

Answered by A5T last updated on 21/Jul/25

Commented by A5T last updated on 21/Jul/25
![((DA×20)/2)=150⇒DA=15⇒CD=(√(20^2 +15^2 ))=25 cos(90+∠CDA)=−sin∠CDA=−((20)/(25))=((−4)/5) AE^2 =DE^2 +AD^2 −2DE×ADcos(90+∠CDA) ⇒20^2 =DE^2 +15^2 −24DE⇒DE=(√(319))−12 AH⊥CD⇒HG=HD=((DG)/2)⇒CH=25−((DG)/2) AC^2 =CH×DC⇒20^2 =(25−((DG)/2))×25⇒DG=18 ⇒[DEFG]=18((√(319))−12)](https://www.tinkutara.com/question/Q223320.png)
$$\frac{\mathrm{DA}×\mathrm{20}}{\mathrm{2}}=\mathrm{150}\Rightarrow\mathrm{DA}=\mathrm{15}\Rightarrow\mathrm{CD}=\sqrt{\mathrm{20}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} }=\mathrm{25} \\ $$$$\mathrm{cos}\left(\mathrm{90}+\angle\mathrm{CDA}\right)=−\mathrm{sin}\angle\mathrm{CDA}=−\frac{\mathrm{20}}{\mathrm{25}}=\frac{−\mathrm{4}}{\mathrm{5}} \\ $$$$\mathrm{AE}^{\mathrm{2}} =\mathrm{DE}^{\mathrm{2}} +\mathrm{AD}^{\mathrm{2}} −\mathrm{2DE}×\mathrm{ADcos}\left(\mathrm{90}+\angle\mathrm{CDA}\right) \\ $$$$\Rightarrow\mathrm{20}^{\mathrm{2}} =\mathrm{DE}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} −\mathrm{24DE}\Rightarrow\mathrm{DE}=\sqrt{\mathrm{319}}−\mathrm{12} \\ $$$$\mathrm{AH}\bot\mathrm{CD}\Rightarrow\mathrm{HG}=\mathrm{HD}=\frac{\mathrm{DG}}{\mathrm{2}}\Rightarrow\mathrm{CH}=\mathrm{25}−\frac{\mathrm{DG}}{\mathrm{2}} \\ $$$$\mathrm{AC}^{\mathrm{2}} =\mathrm{CH}×\mathrm{DC}\Rightarrow\mathrm{20}^{\mathrm{2}} =\left(\mathrm{25}−\frac{\mathrm{DG}}{\mathrm{2}}\right)×\mathrm{25}\Rightarrow\mathrm{DG}=\mathrm{18} \\ $$$$\Rightarrow\left[\mathrm{DEFG}\right]=\mathrm{18}\left(\sqrt{\mathrm{319}}−\mathrm{12}\right) \\ $$
Commented by fantastic last updated on 21/Jul/25
Commented by A5T last updated on 21/Jul/25

Commented by A5T last updated on 21/Jul/25

Commented by fantastic last updated on 21/Jul/25

$${can}\:{you}\:{please}\:{tell}\:{me}\:{how}\:{to}\: \\ $$$${higher}\:{up}\:{the}\:{decimals}. \\ $$$${mine}\:{only}\:{gives}\:\mathrm{1}\:{decimal} \\ $$
Commented by fantastic last updated on 21/Jul/25

$${Thanks} \\ $$
Commented by A5T last updated on 21/Jul/25

$$\mathrm{Click}\:\mathrm{on}\:\mathrm{the}\:\mathrm{settings}\:\mathrm{button}\:\mathrm{in}\:\mathrm{the}\:\mathrm{top}\:\mathrm{right}\:\mathrm{corner}, \\ $$$$\mathrm{then}\:\mathrm{click}\:\mathrm{on}\:\mathrm{the}\:\mathrm{General}\:\mathrm{menu},\:\mathrm{then}\:\mathrm{click} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{Rounding}\:\mathrm{menu}\:\mathrm{to}\:\mathrm{change}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{decimal}\:\mathrm{places}\:\mathrm{or}\:\mathrm{significant}\:\mathrm{figures}. \\ $$
Answered by fantastic last updated on 21/Jul/25

Commented by fantastic last updated on 21/Jul/25
![(1/2)×AB×AD=150 AD=((150×2)/(20))=15 BD=(√(AD^2 +AB^2 ))=(√(15^2 +20^2 ))=(√(625))=25 Let DH=x So x×25=CD×DL[L is bottommost point] x=(((20−15)×(15+20))/(25))=7 BH=25+7=32 AL⊥BH⇒DL=(((32)/2)−7)=9 BD∥EJ So AK⊥EJ So EK=KJ DEKI rectangle EK=9=KJ Let KI=y AL×BD×(1/2)=150 ⇒AL=12 So AE^2 =EK^2 +(12+x)^2 ⇒x=(√(319))−12 Area of rectangle=(9+9)×((√(319))−12) =18((√(319))−12) sq.units](https://www.tinkutara.com/question/Q223333.png)
$$\frac{\mathrm{1}}{\mathrm{2}}×{AB}×{AD}=\mathrm{150} \\ $$$${AD}=\frac{\mathrm{150}×\mathrm{2}}{\mathrm{20}}=\mathrm{15} \\ $$$${BD}=\sqrt{{AD}^{\mathrm{2}} +{AB}^{\mathrm{2}} }=\sqrt{\mathrm{15}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} }=\sqrt{\mathrm{625}}=\mathrm{25} \\ $$$${Let}\:{DH}={x} \\ $$$${So}\:{x}×\mathrm{25}={CD}×{DL}\left[{L}\:{is}\:{bottommost}\:{point}\right] \\ $$$${x}=\frac{\left(\mathrm{20}−\mathrm{15}\right)×\left(\mathrm{15}+\mathrm{20}\right)}{\mathrm{25}}=\mathrm{7} \\ $$$${BH}=\mathrm{25}+\mathrm{7}=\mathrm{32} \\ $$$${AL}\bot{BH}\Rightarrow{DL}=\left(\frac{\mathrm{32}}{\mathrm{2}}−\mathrm{7}\right)=\mathrm{9} \\ $$$${BD}\parallel{EJ}\: \\ $$$${So}\:{AK}\bot{EJ} \\ $$$${So}\:{EK}={KJ} \\ $$$${DEKI}\:{rectangle} \\ $$$${EK}=\mathrm{9}={KJ} \\ $$$${Let}\:{KI}={y} \\ $$$${AL}×{BD}×\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{150} \\ $$$$\Rightarrow{AL}=\mathrm{12} \\ $$$${So}\:{AE}^{\mathrm{2}} ={EK}^{\mathrm{2}} +\left(\mathrm{12}+{x}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{x}=\sqrt{\mathrm{319}}−\mathrm{12} \\ $$$${Area}\:{of}\:{rectangle}=\left(\mathrm{9}+\mathrm{9}\right)×\left(\sqrt{\mathrm{319}}−\mathrm{12}\right) \\ $$$$=\mathrm{18}\left(\sqrt{\mathrm{319}}−\mathrm{12}\right)\:{sq}.{units} \\ $$
Answered by mr W last updated on 21/Jul/25

Commented by fantastic last updated on 21/Jul/25

$${Thanks} \\ $$
Commented by mr W last updated on 21/Jul/25

$${R}=\mathrm{20} \\ $$$${h}=\frac{\mathrm{2}×\mathrm{150}}{\mathrm{20}}=\mathrm{15} \\ $$$${c}=\frac{{Rh}}{\:\sqrt{{R}^{\mathrm{2}} +{h}^{\mathrm{2}} }}=\frac{\mathrm{20}×\mathrm{15}}{\:\sqrt{\mathrm{20}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} }}=\mathrm{12} \\ $$$$\sqrt{{h}^{\mathrm{2}} −\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} }={c}=\mathrm{12} \\ $$$$\Rightarrow{a}=\mathrm{2}\sqrt{\mathrm{15}^{\mathrm{2}} −\mathrm{12}^{\mathrm{2}} }=\mathrm{18} \\ $$$$\left({b}+{c}\right)^{\mathrm{2}} +\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow{b}=\sqrt{{R}^{\mathrm{2}} −\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} }−\mathrm{12}=\sqrt{\mathrm{20}^{\mathrm{2}} −\mathrm{9}^{\mathrm{2}} }−\mathrm{12}=\sqrt{\mathrm{319}}−\mathrm{12} \\ $$$${A}_{{red}} ={ab}=\mathrm{18}\left(\sqrt{\mathrm{319}}−\mathrm{12}\right) \\ $$