Question Number 223374 by behi834171 last updated on 22/Jul/25

Answered by Ghisom last updated on 22/Jul/25

$${r}^{\mathrm{4}} +\mathrm{4}{r}+\mathrm{1}=\mathrm{0} \\ $$$${r}^{\mathrm{4}} =−\mathrm{4}{r}−\mathrm{1} \\ $$$${r}^{\mathrm{4}} −\mathrm{1}=−\mathrm{4}{r}−\mathrm{2} \\ $$$$ \\ $$$$\left({r}−{r}_{\mathrm{1}} \right)\left({r}−{r}_{\mathrm{2}} \right)\left({r}−{r}_{\mathrm{3}} \right)\left({r}−{r}_{\mathrm{4}} \right)={r}^{\mathrm{4}} +\mathrm{4}{r}+\mathrm{1} \\ $$$$\Rightarrow \\ $$$${A}={r}_{\mathrm{1}} +{r}_{\mathrm{2}} +{r}_{\mathrm{3}} +{r}_{\mathrm{4}} =\mathrm{0} \\ $$$${B}={r}_{\mathrm{1}} {r}_{\mathrm{2}} +{r}_{\mathrm{1}} {r}_{\mathrm{3}} +{r}_{\mathrm{1}} {r}_{\mathrm{4}} +{r}_{\mathrm{2}} {r}_{\mathrm{3}} +{r}_{\mathrm{2}} {r}_{\mathrm{4}} +{r}_{\mathrm{3}} {r}_{\mathrm{4}} =\mathrm{0} \\ $$$${C}={r}_{\mathrm{1}} {r}_{\mathrm{2}} {r}_{\mathrm{3}} +{r}_{\mathrm{1}} {r}_{\mathrm{2}} {r}_{\mathrm{4}} +{r}_{\mathrm{1}} {r}_{\mathrm{3}} {r}_{\mathrm{4}} +{r}_{\mathrm{2}} {r}_{\mathrm{3}} {r}_{\mathrm{4}} =−\mathrm{4} \\ $$$${D}={r}_{\mathrm{1}} {r}_{\mathrm{2}} {r}_{\mathrm{3}} {r}_{\mathrm{4}} =\mathrm{1} \\ $$$$\Rightarrow{e} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}\left({r}_{{i}} ^{\mathrm{4}} −\mathrm{1}\right)= \\ $$$$=\left(−\mathrm{2}\right)^{\mathrm{4}} \left(\mathrm{2}{r}_{\mathrm{1}} −\mathrm{1}\right)\left(\mathrm{2}{r}_{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{2}{r}_{\mathrm{3}} −\mathrm{1}\right)\left(\mathrm{2}{r}_{\mathrm{4}} −\mathrm{1}\right)= \\ $$$$=\mathrm{32}{A}+\mathrm{64}{B}+\mathrm{128}{C}+\mathrm{256}{D}+\mathrm{16}= \\ $$$$=−\mathrm{240} \\ $$
Commented by behi834171 last updated on 23/Jul/25

$${thank}\:{you}\:{so}\:{much}\:{sir}. \\ $$
Answered by mr W last updated on 23/Jul/25

$${r}^{\mathrm{4}} −\mathrm{1}=−\mathrm{4}\left({r}+\frac{\mathrm{1}}{\mathrm{2}}\right)=−\mathrm{4}{p} \\ $$$$\left({r}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{4}} +\mathrm{4}\left({r}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{1}=\mathrm{0} \\ $$$$\left({p}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{4}} +\mathrm{4}\left({p}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{1}=\mathrm{0} \\ $$$$…+\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{4}} +\mathrm{4}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{1}=\mathrm{0} \\ $$$$…−\frac{\mathrm{15}}{\mathrm{16}}=\mathrm{0}\:\:\:\:\:\left({we}\:{only}\:{need}\:{the}\:{constant}\:{term}\right) \\ $$$$\Rightarrow\underset{{i}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{p}_{{i}} =−\frac{\mathrm{15}}{\mathrm{16}} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}\left({r}_{{i}} ^{\mathrm{4}} −\mathrm{1}\right)=\left(−\mathrm{4}\right)^{\mathrm{4}} \underset{{i}=\mathrm{1}} {\overset{\mathrm{4}} {\prod}}{p}_{{i}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{256}×\left(−\frac{\mathrm{15}}{\mathrm{16}}\right)=−\mathrm{240}\:\checkmark \\ $$
Commented by behi834171 last updated on 23/Jul/25

$${wow}! \\ $$$${very}\:{nice}\:{work}.{thank}\:{alot}\:{dear}\:{master}. \\ $$
Answered by behi834171 last updated on 23/Jul/25

$$\boldsymbol{{r}}^{\mathrm{4}} −\mathrm{1}=\left(\boldsymbol{{r}}+\mathrm{1}\right)\left(\boldsymbol{{r}}−\mathrm{1}\right)\left(\boldsymbol{{r}}+\boldsymbol{{i}}\right)\left(\boldsymbol{{r}}−\boldsymbol{{i}}\right);\:\boldsymbol{{i}}=\sqrt{−\mathrm{1}} \\ $$$$\boldsymbol{{r}}^{\mathrm{4}} +\mathrm{4}\boldsymbol{{r}}+\mathrm{1}=\underset{\mathrm{1}} {\overset{\mathrm{4}} {\boldsymbol{\prod}}}\left(\boldsymbol{{r}}−\boldsymbol{{r}}_{\boldsymbol{{i}}} \right) \\ $$$$\Rightarrow\begin{cases}{\mathrm{1}+\mathrm{4}×\mathrm{1}+\mathrm{1}=\Pi\left(\mathrm{1}−\boldsymbol{{r}}_{\boldsymbol{{i}}} \right)}\\{\mathrm{1}−\mathrm{4}×\mathrm{1}+\mathrm{1}=\boldsymbol{\Pi}\left(−\mathrm{1}−\boldsymbol{{r}}_{\boldsymbol{{i}}} \right)}\\{\mathrm{1}+\mathrm{4}\boldsymbol{{i}}+\mathrm{1}=\boldsymbol{\Pi}\left(\boldsymbol{{i}}−\boldsymbol{{r}}_{\boldsymbol{{i}}} \right)}\\{\mathrm{1}−\mathrm{4}\boldsymbol{{i}}+\mathrm{1}=\boldsymbol{\Pi}\left(−\boldsymbol{{i}}−\boldsymbol{{r}}_{\boldsymbol{{i}}} \right)}\end{cases} \\ $$$$\Rightarrow\left(\mathrm{6}\right)\left(−\mathrm{2}\right)\left(\mathrm{2}+\mathrm{4}{i}\right)\left(\mathrm{2}−\mathrm{4}{i}\right)=\Pi\left(\boldsymbol{{r}}_{\boldsymbol{{i}}} ^{\mathrm{4}} −\mathrm{1}\right)\Rightarrow \\ $$$$\Pi\left(\boldsymbol{{r}}_{\boldsymbol{{i}}} ^{\mathrm{4}} −\mathrm{1}\right)=−\mathrm{12}\left(\mathrm{4}−\mathrm{16}\boldsymbol{{i}}^{\mathrm{2}} \right)=−\mathrm{12}×\mathrm{20}=−\mathrm{240}.\:\:\blacksquare \\ $$