Menu Close

is-it-possible-to-prove-that-mn-m-n-m-n-divisible-by-6-always-




Question Number 223414 by BaliramKumar last updated on 24/Jul/25
is it possible to prove that mn(m+n)(m−n)   divisible by 6 always
$${is}\:{it}\:{possible}\:{to}\:{prove}\:{that}\:{mn}\left({m}+{n}\right)\left({m}−{n}\right)\: \\ $$$${divisible}\:{by}\:\mathrm{6}\:{always}\:\:\:\:\:\:\:\:\:\: \\ $$
Answered by mehdee7396 last updated on 24/Jul/25
let   d=mn(m+n)(m−n)  case1  1) m∈E  or   n∈E⇒ 2∣mn⇒2∣d  2) m,n∈O⇒2∣m+n & 2∣m−n⇒ 2∣d  ⇒∀m,n ⇒2∣d  (i)  case 2  1) m=3k  or  n=3k′⇒3∣mn⇒3∣d  2) m=3k±1  &   n=3k′±1⇒3∣m−n⇒3∣d  3)m=3k+1  &   n=3k′−1⇒3∣m+n⇒3∣d  ⇒∀m,n ⇒3∣d   (ii)  (i),(ii)⇒^((2,3)=1) 6∣d
$${let}\:\:\:{d}={mn}\left({m}+{n}\right)\left({m}−{n}\right) \\ $$$${case}\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{m}\in{E}\:\:{or}\:\:\:{n}\in{E}\Rightarrow\:\mathrm{2}\mid{mn}\Rightarrow\mathrm{2}\mid{d} \\ $$$$\left.\mathrm{2}\right)\:{m},{n}\in{O}\Rightarrow\mathrm{2}\mid{m}+{n}\:\&\:\mathrm{2}\mid{m}−{n}\Rightarrow\:\mathrm{2}\mid{d} \\ $$$$\Rightarrow\forall{m},{n}\:\Rightarrow\mathrm{2}\mid{d}\:\:\left({i}\right) \\ $$$${case}\:\mathrm{2} \\ $$$$\left.\mathrm{1}\right)\:{m}=\mathrm{3}{k}\:\:{or}\:\:{n}=\mathrm{3}{k}'\Rightarrow\mathrm{3}\mid{mn}\Rightarrow\mathrm{3}\mid{d} \\ $$$$\left.\mathrm{2}\right)\:{m}=\mathrm{3}{k}\pm\mathrm{1}\:\:\&\:\:\:{n}=\mathrm{3}{k}'\pm\mathrm{1}\Rightarrow\mathrm{3}\mid{m}−{n}\Rightarrow\mathrm{3}\mid{d} \\ $$$$\left.\mathrm{3}\right){m}=\mathrm{3}{k}+\mathrm{1}\:\:\&\:\:\:{n}=\mathrm{3}{k}'−\mathrm{1}\Rightarrow\mathrm{3}\mid{m}+{n}\Rightarrow\mathrm{3}\mid{d} \\ $$$$\Rightarrow\forall{m},{n}\:\Rightarrow\mathrm{3}\mid{d}\:\:\:\left({ii}\right) \\ $$$$\left({i}\right),\left({ii}\right)\overset{\left(\mathrm{2},\mathrm{3}\right)=\mathrm{1}} {\Rightarrow}\mathrm{6}\mid{d} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *