Menu Close

Question-223405




Question Number 223405 by behi834171 last updated on 24/Jul/25
Answered by fantastic last updated on 24/Jul/25
((x+((x+1))^(1/3) ))^(1/3) =(1/2)  (((x+((x+1))^(1/3) ))^(1/3) )^3 =(1/8)  ∴x+((x+1))^(1/3) =(1/8)  let ((x+1))^(1/3) =u  So u^3 =x+1  or x=u^3 −1  So the equation becomes  u^3 −1+u=(1/8)  u≈0.73229785062139  So x=u^3 −1⇒≈−0.60729785062139
$$\sqrt[{\mathrm{3}}]{{x}+\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left(\sqrt[{\mathrm{3}}]{{x}+\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}}\right)^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\therefore{x}+\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${let}\:\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}={u} \\ $$$${So}\:{u}^{\mathrm{3}} ={x}+\mathrm{1} \\ $$$${or}\:{x}={u}^{\mathrm{3}} −\mathrm{1} \\ $$$${So}\:{the}\:{equation}\:{becomes} \\ $$$${u}^{\mathrm{3}} −\mathrm{1}+{u}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${u}\approx\mathrm{0}.\mathrm{73229785062139} \\ $$$${So}\:{x}={u}^{\mathrm{3}} −\mathrm{1}\Rightarrow\approx−\mathrm{0}.\mathrm{60729785062139} \\ $$
Answered by mr W last updated on 24/Jul/25
x+1+((x+1))^(1/3) =(9/8)  t=((x+1))^(1/3)   t^3 +t−(9/8)=0  t=(((√((−(9/(16)))^2 +(1/3^3 )))+(9/(16))))^(1/3) −(((√((−(9/(16)))^2 +(1/3^3 )))−(9/(16))))^(1/3)    =((((√(7329))/(144))+(9/(16))))^(1/3) −((((√(7329))/(144))−(9/(16))))^(1/3)   x=t^3 −1=(1/8)−t    =(1/8)−((((√(7329))/(144))+(9/(16))))^(1/3) +((((√(7329))/(144))−(9/(16))))^(1/3)     ≈−0.607298
$${x}+\mathrm{1}+\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}=\frac{\mathrm{9}}{\mathrm{8}} \\ $$$${t}=\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}} \\ $$$${t}^{\mathrm{3}} +{t}−\frac{\mathrm{9}}{\mathrm{8}}=\mathrm{0} \\ $$$${t}=\sqrt[{\mathrm{3}}]{\sqrt{\left(−\frac{\mathrm{9}}{\mathrm{16}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }}+\frac{\mathrm{9}}{\mathrm{16}}}−\sqrt[{\mathrm{3}}]{\sqrt{\left(−\frac{\mathrm{9}}{\mathrm{16}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }}−\frac{\mathrm{9}}{\mathrm{16}}} \\ $$$$\:=\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{7329}}}{\mathrm{144}}+\frac{\mathrm{9}}{\mathrm{16}}}−\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{7329}}}{\mathrm{144}}−\frac{\mathrm{9}}{\mathrm{16}}} \\ $$$${x}={t}^{\mathrm{3}} −\mathrm{1}=\frac{\mathrm{1}}{\mathrm{8}}−{t} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{8}}−\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{7329}}}{\mathrm{144}}+\frac{\mathrm{9}}{\mathrm{16}}}+\sqrt[{\mathrm{3}}]{\frac{\sqrt{\mathrm{7329}}}{\mathrm{144}}−\frac{\mathrm{9}}{\mathrm{16}}} \\ $$$$\:\:\approx−\mathrm{0}.\mathrm{607298} \\ $$
Commented by fantastic last updated on 24/Jul/25
I think you used Cardano′s Formula. Right??
$${I}\:{think}\:{you}\:{used}\:{Cardano}'{s}\:{Formula}.\:{Right}?? \\ $$
Commented by mr W last updated on 24/Jul/25
yes
$${yes} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *