Menu Close

Question-223424




Question Number 223424 by behi834171 last updated on 25/Jul/25
Commented by fantastic last updated on 25/Jul/25
GIGANTIC when using normal method
$${GIGANTIC}\:{when}\:{using}\:{normal}\:{method} \\ $$
Commented by Ghisom last updated on 25/Jul/25
p_(min) =4(√5) at x=((317−32(√(61)))/(625))
$${p}_{\mathrm{min}} =\mathrm{4}\sqrt{\mathrm{5}}\:\mathrm{at}\:{x}=\frac{\mathrm{317}−\mathrm{32}\sqrt{\mathrm{61}}}{\mathrm{625}} \\ $$
Commented by fantastic last updated on 25/Jul/25
how
$${how} \\ $$
Answered by behi834171 last updated on 25/Jul/25
x≥0  ,x≤1⇒x∈[0,1]    1)41−40(√x)=(16+25)−2×4×5(√x)=  =4^2 +5^2 −2×4×5×cos𝛉  (cosinus rule)    2)89−80(√(1−x))=(25+64)−2×5×8(√(1−x))=  =5^2 +8^2 −2×5×8×sin𝛉=  =5^2 +8^2 −2×5×8×cos((𝛑/2)−𝛉)    3)[see the pic below⇓⇓]    p,is minimum,when the points:  B and  D,C,are colinear.  so,because of the triangle:ABC,  is rightangle,then:  BC=p_(min) =(√(4^2 +8^2 ))=4(√5)  .■
$$\boldsymbol{{x}}\geqslant\mathrm{0}\:\:,\boldsymbol{{x}}\leqslant\mathrm{1}\Rightarrow\boldsymbol{{x}}\in\left[\mathrm{0},\mathrm{1}\right] \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\mathrm{41}−\mathrm{40}\sqrt{\boldsymbol{{x}}}=\left(\mathrm{16}+\mathrm{25}\right)−\mathrm{2}×\mathrm{4}×\mathrm{5}\sqrt{\boldsymbol{{x}}}= \\ $$$$=\mathrm{4}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} −\mathrm{2}×\mathrm{4}×\mathrm{5}×\boldsymbol{{cos}\theta}\:\:\left({cosinus}\:{rule}\right) \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\mathrm{89}−\mathrm{80}\sqrt{\mathrm{1}−\boldsymbol{{x}}}=\left(\mathrm{25}+\mathrm{64}\right)−\mathrm{2}×\mathrm{5}×\mathrm{8}\sqrt{\mathrm{1}−\boldsymbol{{x}}}= \\ $$$$=\mathrm{5}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} −\mathrm{2}×\mathrm{5}×\mathrm{8}×\boldsymbol{{sin}\theta}= \\ $$$$=\mathrm{5}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} −\mathrm{2}×\mathrm{5}×\mathrm{8}×\boldsymbol{{cos}}\left(\frac{\boldsymbol{\pi}}{\mathrm{2}}−\boldsymbol{\theta}\right) \\ $$$$ \\ $$$$\left.\mathrm{3}\right)\left[\boldsymbol{{see}}\:\boldsymbol{{the}}\:\boldsymbol{{pic}}\:\boldsymbol{{below}}\Downarrow\Downarrow\right] \\ $$$$ \\ $$$$\boldsymbol{{p}},\boldsymbol{{is}}\:\boldsymbol{{minimum}},\boldsymbol{{when}}\:\boldsymbol{{the}}\:\boldsymbol{{points}}: \\ $$$$\boldsymbol{{B}}\:\boldsymbol{{and}}\:\:\boldsymbol{{D}},\boldsymbol{{C}},\boldsymbol{{are}}\:\boldsymbol{{colinear}}. \\ $$$$\boldsymbol{{so}},\boldsymbol{{because}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{triangle}}:\boldsymbol{{ABC}}, \\ $$$$\boldsymbol{{is}}\:\boldsymbol{{rightangle}},\boldsymbol{{then}}: \\ $$$$\boldsymbol{{BC}}=\boldsymbol{{p}}_{\boldsymbol{{min}}} =\sqrt{\mathrm{4}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} }=\mathrm{4}\sqrt{\mathrm{5}}\:\:.\blacksquare \\ $$
Commented by behi834171 last updated on 25/Jul/25
Commented by Ghisom last updated on 26/Jul/25
yes, this was my idea, too
$$\mathrm{yes},\:\mathrm{this}\:\mathrm{was}\:\mathrm{my}\:\mathrm{idea},\:\mathrm{too} \\ $$
Commented by behi834171 last updated on 26/Jul/25
thank you for your  attention sir.  have any idea for value of:x?
$${thank}\:{you}\:{for}\:{your}\:\:{attention}\:{sir}. \\ $$$${have}\:{any}\:{idea}\:{for}\:{value}\:{of}:\boldsymbol{{x}}? \\ $$
Commented by behi834171 last updated on 26/Jul/25
Commented by fantastic last updated on 26/Jul/25
Wonderful Solution!
$${Wonderful}\:{Solution}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *