Menu Close

log-8-log-2-log-3-4-x-17-1-3-x-




Question Number 223514 by fantastic last updated on 27/Jul/25
log _8 [log _2 {log _3 (4^x +17)}]=(1/3)  x=??
$$\mathrm{log}\:_{\mathrm{8}} \left[\mathrm{log}\:_{\mathrm{2}} \left\{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{4}^{{x}} +\mathrm{17}\right)\right\}\right]=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${x}=?? \\ $$
Answered by som(math1967) last updated on 27/Jul/25
log_2 {log_3 (4^x +17)}=8^(1/3) =2  log_3 (4^x +17)=2^2   ⇒4^x +17=3^4   ⇒4^x =81−17  ⇒4^x =4^3       ∴x=3
$${log}_{\mathrm{2}} \left\{{log}_{\mathrm{3}} \left(\mathrm{4}^{{x}} +\mathrm{17}\right)\right\}=\mathrm{8}^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{2} \\ $$$${log}_{\mathrm{3}} \left(\mathrm{4}^{{x}} +\mathrm{17}\right)=\mathrm{2}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}^{{x}} +\mathrm{17}=\mathrm{3}^{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{4}^{{x}} =\mathrm{81}−\mathrm{17} \\ $$$$\Rightarrow\mathrm{4}^{{x}} =\mathrm{4}^{\mathrm{3}} \:\:\:\:\:\:\therefore{x}=\mathrm{3} \\ $$
Commented by fantastic last updated on 27/Jul/25
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *