Menu Close

If-log-x-y-z-log-y-z-x-log-z-x-y-prove-xyz-1-




Question Number 223512 by fantastic last updated on 27/Jul/25
If ((log x)/(y−z))=((log y)/(z−x))=((log z)/(x−y))  prove xyz=1
$${If}\:\frac{\mathrm{log}\:{x}}{{y}−{z}}=\frac{\mathrm{log}\:{y}}{{z}−{x}}=\frac{\mathrm{log}\:{z}}{{x}−{y}} \\ $$$${prove}\:{xyz}=\mathrm{1} \\ $$
Answered by mr W last updated on 27/Jul/25
((log x)/(y−z))=((log y)/(z−x))=((log z)/(x−y))=(1/k)  (k≠0)  y−z=k log x  z−x=k log y  x−y=k log z  Σ:  ⇒0=k (log x+log y+log z)=k log xyz  ⇒log xyx=0 ⇒xyz=1 ✓
$$\frac{\mathrm{log}\:{x}}{{y}−{z}}=\frac{\mathrm{log}\:{y}}{{z}−{x}}=\frac{\mathrm{log}\:{z}}{{x}−{y}}=\frac{\mathrm{1}}{{k}}\:\:\left({k}\neq\mathrm{0}\right) \\ $$$${y}−{z}={k}\:\mathrm{log}\:{x} \\ $$$${z}−{x}={k}\:\mathrm{log}\:{y} \\ $$$${x}−{y}={k}\:\mathrm{log}\:{z} \\ $$$$\Sigma: \\ $$$$\Rightarrow\mathrm{0}={k}\:\left(\mathrm{log}\:{x}+\mathrm{log}\:{y}+\mathrm{log}\:{z}\right)={k}\:\mathrm{log}\:{xyz} \\ $$$$\Rightarrow\mathrm{log}\:{xyx}=\mathrm{0}\:\Rightarrow{xyz}=\mathrm{1}\:\checkmark \\ $$
Commented by fantastic last updated on 27/Jul/25
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *