Question Number 223560 by fantastic last updated on 29/Jul/25

Commented by fantastic last updated on 29/Jul/25

$${area}=? \\ $$
Commented by fantastic last updated on 29/Jul/25

$${keep}\:{in}\:{mind}\:{that}\:{it}\:{is}\:{a}\:{grade}\:\mathrm{9} \\ $$$${question}\:{and}\:{trigonomerty}\:{and} \\ $$$${any}\:{higher}\:{level}\:{method}\:{is}\:{not}\:{allowed} \\ $$
Commented by AgniMath last updated on 29/Jul/25

$${Are}\:{you}\:{west}\:{bengal}\:{board}\:{candidate} \\ $$$${class}\:\mathrm{9}? \\ $$
Commented by AgniMath last updated on 29/Jul/25

Commented by mr W last updated on 29/Jul/25

Commented by fantastic last updated on 29/Jul/25

$${yes}. \\ $$$${How}\:{did}\:{you}\:{know}?? \\ $$
Commented by fantastic last updated on 29/Jul/25

$${thanks}\:{sir} \\ $$
Commented by fantastic last updated on 29/Jul/25

$${Thanks}\:{sir} \\ $$$$ \\ $$
Commented by AgniMath last updated on 30/Jul/25

$${I}\:{read}\:{in}\:{class}\:\mathrm{9}\:{west}\:{bengal}\:{board}\: \\ $$$${before}\:\left({now}\:{in}\:\mathrm{11}{th}\right).\:{I}\:{remembered}\:{this} \\ $$$${question}. \\ $$
Commented by fantastic last updated on 30/Jul/25

$${thanks}\:{sir}. \\ $$
Commented by ajfour last updated on 30/Jul/25
https://youtu.be/x1KJRC4GqpI?si=pilhm24h2cFqVOig
Commented by mr W last updated on 30/Jul/25

$${an}\:{other}\:{way}\:{as}\:{in}\:{video}: \\ $$
Commented by mr W last updated on 30/Jul/25

Commented by mr W last updated on 31/Jul/25

$$\left({a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right){r}={ab} \\ $$$$\Rightarrow{r}=\frac{{ab}}{{a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}=\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}+\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}} \\ $$$$\frac{{r}_{{a}} }{{r}}=\frac{{b}+\mathrm{2}{r}_{{a}} }{{b}} \\ $$$$\Rightarrow{r}_{{a}} =\frac{\mathrm{1}}{\frac{\mathrm{1}}{{r}}−\frac{\mathrm{2}}{{b}}}=\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}+\frac{\mathrm{1}}{{a}}−\frac{\mathrm{1}}{{b}}} \\ $$$${similarly} \\ $$$$\Rightarrow{r}_{{b}} =\frac{\mathrm{1}}{\frac{\mathrm{1}}{{r}}−\frac{\mathrm{2}}{{a}}}=\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}−\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}} \\ $$$${example}\:{in}\:{video}:\:{a}=\mathrm{5},\:{b}=\frac{\mathrm{4}}{\mathrm{3}}×\mathrm{5}=\frac{\mathrm{20}}{\mathrm{3}} \\ $$$${r}=\frac{\mathrm{5}×\frac{\mathrm{20}}{\mathrm{3}}}{\mathrm{5}+\frac{\mathrm{20}}{\mathrm{3}}+\sqrt{\mathrm{5}^{\mathrm{2}} +\left(\frac{\mathrm{20}}{\mathrm{3}}\right)^{\mathrm{2}} }}=\frac{\mathrm{5}}{\mathrm{3}}\:\:\:\:\left(={r}\right) \\ $$$${r}_{{a}} =\frac{\mathrm{1}}{\frac{\mathrm{3}}{\mathrm{5}}−\frac{\mathrm{2}×\mathrm{3}}{\mathrm{20}}}=\frac{\mathrm{10}}{\mathrm{3}}\:\:\:\:\:\:\:\:\left(={R}\right) \\ $$$${r}_{{b}} =\frac{\mathrm{1}}{\frac{\mathrm{3}}{\mathrm{5}}−\frac{\mathrm{2}}{\mathrm{5}}}=\mathrm{5}\:\:\:\:\:\:\:\:\:\:\left(=\rho\right) \\ $$
Commented by ajfour last updated on 31/Jul/25

$${Thank}\:{you}\:{sir}!\:{keen}\:{notice}. \\ $$