Menu Close

Question-223673




Question Number 223673 by gregori last updated on 02/Aug/25
Answered by som(math1967) last updated on 02/Aug/25
 tan^2 x=(2/3)   ((sin^8 x)/8)+((cos^8 x)/(27))=(1/(125))   ((sin^4 x)/2) +(((1−sin^2 x)^2 )/3)=(1/5)   ⇒3sin^4 x+2sin^4 x−4sin^2 x+2=(6/5)  ⇒25sin^4 x−20sin^2 x+4=0  ⇒(5sin^2 x−2)^2 =0   ∴sin^2 x=(2/5)⇒cos^2 x=(3/5)   sin^8 x=(2^4 /5^4 )    ⇒cos^8 x=(3^4 /5^4 )  ∴ ((sin^8 x)/8) +((cos^8 x)/(27))  =(2^4 /(8×5^4 )) +(3^4 /(27×5^4 ))=((2+3)/5^4 )=(1/5^3 )=(1/(125))
$$\:{tan}^{\mathrm{2}} {x}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\:\frac{{sin}^{\mathrm{8}} {x}}{\mathrm{8}}+\frac{\mathrm{cos}\:^{\mathrm{8}} {x}}{\mathrm{27}}=\frac{\mathrm{1}}{\mathrm{125}} \\ $$$$\:\frac{{sin}^{\mathrm{4}} {x}}{\mathrm{2}}\:+\frac{\left(\mathrm{1}−{sin}^{\mathrm{2}} {x}\right)^{\mathrm{2}} }{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{5}}\: \\ $$$$\Rightarrow\mathrm{3}{sin}^{\mathrm{4}} {x}+\mathrm{2}{sin}^{\mathrm{4}} {x}−\mathrm{4}{sin}^{\mathrm{2}} {x}+\mathrm{2}=\frac{\mathrm{6}}{\mathrm{5}} \\ $$$$\Rightarrow\mathrm{25}{sin}^{\mathrm{4}} {x}−\mathrm{20}{sin}^{\mathrm{2}} {x}+\mathrm{4}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{5}{sin}^{\mathrm{2}} {x}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\therefore{sin}^{\mathrm{2}} {x}=\frac{\mathrm{2}}{\mathrm{5}}\Rightarrow{cos}^{\mathrm{2}} {x}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\:{sin}^{\mathrm{8}} {x}=\frac{\mathrm{2}^{\mathrm{4}} }{\mathrm{5}^{\mathrm{4}} }\:\:\:\:\Rightarrow{cos}^{\mathrm{8}} {x}=\frac{\mathrm{3}^{\mathrm{4}} }{\mathrm{5}^{\mathrm{4}} } \\ $$$$\therefore\:\frac{{sin}^{\mathrm{8}} {x}}{\mathrm{8}}\:+\frac{{cos}^{\mathrm{8}} {x}}{\mathrm{27}} \\ $$$$=\frac{\mathrm{2}^{\mathrm{4}} }{\mathrm{8}×\mathrm{5}^{\mathrm{4}} }\:+\frac{\mathrm{3}^{\mathrm{4}} }{\mathrm{27}×\mathrm{5}^{\mathrm{4}} }=\frac{\mathrm{2}+\mathrm{3}}{\mathrm{5}^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{125}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *