Menu Close

lim-N-p-N-1-p-N-p-1-2-p-2-3-p-3-5-




Question Number 223778 by wewji12 last updated on 04/Aug/25
lim_(N→∞)  (p_(N+1) /p_N )=???  , p_1 =2 , p_2 =3 ,p_3 =5 ....
$$\underset{{N}\rightarrow\infty} {\mathrm{lim}}\:\frac{{p}_{{N}+\mathrm{1}} }{{p}_{{N}} }=???\:\:,\:{p}_{\mathrm{1}} =\mathrm{2}\:,\:{p}_{\mathrm{2}} =\mathrm{3}\:,{p}_{\mathrm{3}} =\mathrm{5}\:…. \\ $$
Answered by mr W last updated on 04/Aug/25
p_(n+1) =p_n +p_(n−1)   (p_(n+1) /p^n )=1+(p_(n−1) /p_n )  say lim_(n→∞) (p_(n+1) /p_n )=lim_(n→∞) (p_n /p_(n−1) )=L >1  L=1+(1/L)  L^2 −L−1=0  ⇒L=((1+(√5))/2)=ϕ≈1.618      (((−1+(√5))/2)<1 ⇒rejected)
$${p}_{{n}+\mathrm{1}} ={p}_{{n}} +{p}_{{n}−\mathrm{1}} \\ $$$$\frac{{p}_{{n}+\mathrm{1}} }{{p}^{{n}} }=\mathrm{1}+\frac{{p}_{{n}−\mathrm{1}} }{{p}_{{n}} } \\ $$$${say}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{p}_{{n}+\mathrm{1}} }{{p}_{{n}} }=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{p}_{{n}} }{{p}_{{n}−\mathrm{1}} }={L}\:>\mathrm{1} \\ $$$${L}=\mathrm{1}+\frac{\mathrm{1}}{{L}} \\ $$$${L}^{\mathrm{2}} −{L}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{L}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}=\varphi\approx\mathrm{1}.\mathrm{618}\:\:\:\:\:\:\left(\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}<\mathrm{1}\:\Rightarrow{rejected}\right) \\ $$
Commented by Raphael254 last updated on 04/Aug/25
but p_n  is not a prime number?  i think p_1  = 2, p_2  = 3, p_3  = 5, means the first 3 prime numbers, can also means the fourth, fifth and sixth terms of Fibonacci′s sequence (0, 1, 1, 2, 3, 5).  But i don′t know
$${but}\:{p}_{{n}} \:{is}\:{not}\:{a}\:{prime}\:{number}? \\ $$$${i}\:{think}\:{p}_{\mathrm{1}} \:=\:\mathrm{2},\:{p}_{\mathrm{2}} \:=\:\mathrm{3},\:{p}_{\mathrm{3}} \:=\:\mathrm{5},\:{means}\:{the}\:{first}\:\mathrm{3}\:{prime}\:{numbers},\:{can}\:{also}\:{means}\:{the}\:{fourth},\:{fifth}\:{and}\:{sixth}\:{terms}\:{of}\:{Fibonacci}'{s}\:{sequence}\:\left(\mathrm{0},\:\mathrm{1},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{5}\right). \\ $$$${But}\:{i}\:{don}'{t}\:{know} \\ $$
Commented by mr W last updated on 04/Aug/25
then it should be said that p_i  are  prime numbers! who can otherwise  know what is really meant?   i thought it meant 2,3,5,8,13,21,...
$${then}\:{it}\:{should}\:{be}\:{said}\:{that}\:{p}_{{i}} \:{are} \\ $$$${prime}\:{numbers}!\:{who}\:{can}\:{otherwise} \\ $$$${know}\:{what}\:{is}\:{really}\:{meant}?\: \\ $$$${i}\:{thought}\:{it}\:{meant}\:\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{8},\mathrm{13},\mathrm{21},… \\ $$
Commented by Raphael254 last updated on 04/Aug/25
the p_1 = 2, p_2  = 3, p_3  = 5 of the question, it could be the fourth, fifth and sixth terms of the Fibonacci′s sequence,  this question is a little ambiguous, in a common sense, we know that the first three prime numbers are 2, 3 and 5, so p_1 , p_2  and p_3  could be prime numbers.  It can also be the Fibonacci′s sequence, but started at the fourth term.    This ambiguity could be easily broken if the sequence was or was not: p_1  = 2, p_2  = 3, p_3  = 5, p_4  = 8 ...    But another thing that tells that the sequence is formed by prime numbers is the p possibly making reference to prime,  but i don′t know. I only replied because i understood it in a different way.
$${the}\:{p}_{\mathrm{1}} =\:\mathrm{2},\:{p}_{\mathrm{2}} \:=\:\mathrm{3},\:{p}_{\mathrm{3}} \:=\:\mathrm{5}\:{of}\:{the}\:{question},\:{it}\:{could}\:{be}\:{the}\:{fourth},\:{fifth}\:{and}\:{sixth}\:{terms}\:{of}\:{the}\:{Fibonacci}'{s}\:{sequence}, \\ $$$${this}\:{question}\:{is}\:{a}\:{little}\:{ambiguous},\:{in}\:{a}\:{common}\:{sense},\:{we}\:{know}\:{that}\:{the}\:{first}\:{three}\:{prime}\:{numbers}\:{are}\:\mathrm{2},\:\mathrm{3}\:{and}\:\mathrm{5},\:{so}\:{p}_{\mathrm{1}} ,\:{p}_{\mathrm{2}} \:{and}\:{p}_{\mathrm{3}} \:{could}\:{be}\:{prime}\:{numbers}. \\ $$$${It}\:{can}\:{also}\:{be}\:{the}\:{Fibonacci}'{s}\:{sequence},\:{but}\:{started}\:{at}\:{the}\:{fourth}\:{term}. \\ $$$$ \\ $$$${This}\:{ambiguity}\:{could}\:{be}\:{easily}\:{broken}\:{if}\:{the}\:{sequence}\:{was}\:{or}\:{was}\:{not}:\:{p}_{\mathrm{1}} \:=\:\mathrm{2},\:{p}_{\mathrm{2}} \:=\:\mathrm{3},\:{p}_{\mathrm{3}} \:=\:\mathrm{5},\:{p}_{\mathrm{4}} \:=\:\mathrm{8}\:… \\ $$$$ \\ $$$${But}\:{another}\:{thing}\:{that}\:{tells}\:{that}\:{the}\:{sequence}\:{is}\:{formed}\:{by}\:{prime}\:{numbers}\:{is}\:{the}\:\boldsymbol{{p}}\:{possibly}\:{making}\:{reference}\:{to}\:\boldsymbol{{prime}}, \\ $$$${but}\:{i}\:{don}'{t}\:{know}.\:{I}\:{only}\:{replied}\:{because}\:{i}\:{understood}\:{it}\:{in}\:{a}\:{different}\:{way}. \\ $$
Commented by Frix last updated on 04/Aug/25
It′s three given numbers, for me “p_n ” means  “polynomial”  ⇒  p_n =(n^2 /2)−(n/2)+2  ⇒ lim_(n→∞)  (p_(n+1) /p_n ) =1
$$\mathrm{It}'\mathrm{s}\:\mathrm{three}\:\mathrm{given}\:\mathrm{numbers},\:\mathrm{for}\:\mathrm{me}\:“{p}_{{n}} ''\:\mathrm{means} \\ $$$$“\mathrm{polynomial}'' \\ $$$$\Rightarrow \\ $$$${p}_{{n}} =\frac{{n}^{\mathrm{2}} }{\mathrm{2}}−\frac{{n}}{\mathrm{2}}+\mathrm{2} \\ $$$$\Rightarrow\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{p}_{{n}+\mathrm{1}} }{{p}_{{n}} }\:=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *