Menu Close

4-3-4-3-Rewrite-in-simplest-radical-form-




Question Number 223822 by fantastic last updated on 06/Aug/25
(((4/3))^(4/3) )   Rewrite in simplest radical form
$$\left(\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} \right) \\ $$$$\:{Rewrite}\:{in}\:{simplest}\:{radical}\:{form} \\ $$
Answered by Raphael254 last updated on 06/Aug/25
  (((4/3))^(4/3) ) = ((((4/3))^4 ))^(1/3)  = ((((4/3))^3 ×((4/3))))^(1/3)  = ((((4/3))^3 ))^(1/3) ×((((4/3))))^(1/3)  = ((4/3))×((((4/3))))^(1/3)  = (4/3)×((4/3))^(1/3)  or ((4((4/3))^(1/3) )/3) or ((4((4/3))^(1/3) )/3)×(((27))^(1/3) /( ((27))^(1/3) )) = ((4(((4/3)×27))^(1/3) )/(3×3)) = ((4((4×9))^(1/3) )/9) = ((4((36))^(1/3) )/9)
$$ \\ $$$$\left(\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} \right)\:=\:\sqrt[{\mathrm{3}}]{\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{4}} }\:=\:\sqrt[{\mathrm{3}}]{\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{3}} ×\left(\frac{\mathrm{4}}{\mathrm{3}}\right)}\:=\:\sqrt[{\mathrm{3}}]{\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{3}} }×\sqrt[{\mathrm{3}}]{\left(\frac{\mathrm{4}}{\mathrm{3}}\right)}\:=\:\left(\frac{\mathrm{4}}{\mathrm{3}}\right)×\sqrt[{\mathrm{3}}]{\left(\frac{\mathrm{4}}{\mathrm{3}}\right)}\:=\:\frac{\mathrm{4}}{\mathrm{3}}×\sqrt[{\mathrm{3}}]{\frac{\mathrm{4}}{\mathrm{3}}}\:{or}\:\frac{\mathrm{4}\sqrt[{\mathrm{3}}]{\frac{\mathrm{4}}{\mathrm{3}}}}{\mathrm{3}}\:{or}\:\frac{\mathrm{4}\sqrt[{\mathrm{3}}]{\frac{\mathrm{4}}{\mathrm{3}}}}{\mathrm{3}}×\frac{\sqrt[{\mathrm{3}}]{\mathrm{27}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{27}}}\:=\:\frac{\mathrm{4}\sqrt[{\mathrm{3}}]{\frac{\mathrm{4}}{\mathrm{3}}×\mathrm{27}}}{\mathrm{3}×\mathrm{3}}\:=\:\frac{\mathrm{4}\sqrt[{\mathrm{3}}]{\mathrm{4}×\mathrm{9}}}{\mathrm{9}}\:=\:\frac{\mathrm{4}\sqrt[{\mathrm{3}}]{\mathrm{36}}}{\mathrm{9}} \\ $$
Commented by fantastic last updated on 06/Aug/25
thanks sir
$${thanks}\:{sir} \\ $$
Answered by mr W last updated on 06/Aug/25
((4/3))^(4/3) =(4/3)((4/3))^(1/3) =((4((36))^(1/3) )/9)
$$\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} =\frac{\mathrm{4}}{\mathrm{3}}\sqrt[{\mathrm{3}}]{\frac{\mathrm{4}}{\mathrm{3}}}=\frac{\mathrm{4}\sqrt[{\mathrm{3}}]{\mathrm{36}}}{\mathrm{9}} \\ $$
Commented by fantastic last updated on 06/Aug/25
rigth sir
$${rigth}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *