Question Number 223865 by ajfour last updated on 07/Aug/25

Commented by ajfour last updated on 07/Aug/25

$${Contrary}\:{to}\:{diagram}\:{labelling},\:{lets} \\ $$$${have}\:{a}=\mathrm{1},\:{b}={b}.\:\angle{CAE}=\pi/\mathrm{6}. \\ $$$${If}\:{APC}\:{is}\:{a}\:{straight}\:{line},\:{P}\:{being}\:{a} \\ $$$${point}\:{of}\:{tangency},\:{then}\:{find}\:{b},\:{r},\:{R}. \\ $$
Answered by mr W last updated on 08/Aug/25

$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}}{{a}^{\mathrm{2}} }+\frac{{yy}'}{{b}^{\mathrm{2}} }=\mathrm{0} \\ $$$${let}\:\lambda=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$${A}\left({R},\:\mathrm{0}\right) \\ $$$${P}\left({p},\:{q}\right) \\ $$$$\frac{{p}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{q}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{p}}{{a}^{\mathrm{2}} }−\frac{{q}\sqrt{\mathrm{3}}}{{b}^{\mathrm{2}} }=\mathrm{0}\:\Rightarrow{p}=\sqrt{\mathrm{3}}\lambda{q} \\ $$$$\frac{\mathrm{3}\lambda^{\mathrm{2}} {q}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{q}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow{q}=\frac{{b}}{\:\sqrt{\mathrm{1}+\mathrm{3}\lambda}} \\ $$$$\frac{{r}}{{R}−{r}}=\mathrm{sin}\:\frac{\pi}{\mathrm{6}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{R}=\mathrm{3}{r} \\ $$$${p}−{R}=\sqrt{\mathrm{3}}{q} \\ $$$$\sqrt{\mathrm{3}}\lambda{q}−\mathrm{3}{r}=\sqrt{\mathrm{3}}{q} \\ $$$$\Rightarrow{q}=\frac{\sqrt{\mathrm{3}}{r}}{\lambda−\mathrm{1}},\:{p}=\frac{\mathrm{3}\lambda{r}}{\lambda−\mathrm{1}} \\ $$$$\sqrt{\left({p}−{R}\right)^{\mathrm{2}} +{q}^{\mathrm{2}} }={R}−\mathrm{2}{r}={r} \\ $$$$\left({p}−\mathrm{3}{r}\right)^{\mathrm{2}} +{q}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left(\frac{\mathrm{3}\lambda{r}}{\lambda−\mathrm{1}}−\mathrm{3}{r}\right)^{\mathrm{2}} +\frac{\mathrm{3}{r}^{\mathrm{2}} }{\left(\lambda−\mathrm{1}\right)^{\mathrm{2}} }={r}^{\mathrm{2}} \\ $$$$\frac{\mathrm{12}}{\left(\lambda−\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow\lambda=\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{b}=\frac{{a}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}}}\approx\mathrm{0}.\mathrm{473296} \\ $$$${q}=\frac{{b}}{\:\sqrt{\mathrm{1}+\mathrm{3}\lambda}}=\frac{\sqrt{\mathrm{3}}{r}}{\lambda−\mathrm{1}} \\ $$$$\Rightarrow{r}=\frac{{a}\left(\lambda−\mathrm{1}\right)}{\:\sqrt{\mathrm{3}\lambda\left(\mathrm{1}+\mathrm{3}\lambda\right)}} \\ $$
Commented by mr W last updated on 08/Aug/25

Commented by mr W last updated on 09/Aug/25

$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}}{{a}^{\mathrm{2}} }+\frac{{yy}'}{{b}^{\mathrm{2}} }=\mathrm{0} \\ $$$${let}\:{t}=\frac{\mathrm{1}}{\mathrm{tan}\:\theta}\:\:\left(\theta=\frac{\pi}{\mathrm{6}}\:{as}\:{example}\right) \\ $$$${let}\:\lambda=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$${A}\left({R},\:\mathrm{0}\right) \\ $$$${P}\left({p},\:{q}\right) \\ $$$$\frac{{p}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{q}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{p}}{{a}^{\mathrm{2}} }−\frac{{qt}}{{b}^{\mathrm{2}} }=\mathrm{0}\:\Rightarrow{p}=\lambda{tq} \\ $$$$\frac{\lambda^{\mathrm{2}} {t}^{\mathrm{2}} {q}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{q}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow{q}=\frac{{b}}{\:\sqrt{\mathrm{1}+\lambda{t}^{\mathrm{2}} }} \\ $$$$\frac{{r}}{{R}−{r}}=\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }} \\ $$$$\Rightarrow{R}=\left(\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right){r} \\ $$$${p}−{R}={tq} \\ $$$$\lambda{tq}−\left(\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right){r}={tq} \\ $$$$\Rightarrow{q}=\frac{\left(\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right){r}}{\left(\lambda−\mathrm{1}\right){t}},\:{p}=\frac{\lambda\left(\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right){r}}{\left(\lambda−\mathrm{1}\right)} \\ $$$$\sqrt{\left({p}−{R}\right)^{\mathrm{2}} +{q}^{\mathrm{2}} }={R}−\mathrm{2}{r}=\left(\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }−\mathrm{1}\right){r} \\ $$$$\lambda=\mathrm{1}+\frac{\left(\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{1}\right)^{\mathrm{2}} \sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}^{\mathrm{3}} } \\ $$$${r}=\frac{{a}\left(\lambda−\mathrm{1}\right){t}}{\:\left(\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)\sqrt{\lambda\left(\mathrm{1}+\lambda{t}^{\mathrm{2}} \right)}} \\ $$
Commented by mr W last updated on 09/Aug/25

Commented by ajfour last updated on 10/Aug/25

$${thats}\:{great}!\:{effort}\:{and}\:{presentation} \\ $$$${sir}. \\ $$
Commented by ajfour last updated on 10/Aug/25
https://g.co/gemini/share/604fc367abb6