Menu Close

I-0-1-ln-x-1-x-2-1-dx-




Question Number 223933 by MathematicalUser2357 last updated on 10/Aug/25
I=∫_0 ^1 ((ln(x+1))/(x^2 +1))dx
$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$
Answered by Tawa11 last updated on 10/Aug/25
Note:    I(a)  =  ∫_( 0) ^( a)  ((ln(1  +  ax))/(1  +  x^2 )) dx   =   (1/2) tan^(− 1) (a) ln(1  +  a^2 )   In our case:     a  =  1  ∴    ∫_( 0) ^( 1)  ((ln(x  +  1)/(x^2   +  1)) dx   =   (1/2) tan^(− 1) (1) ln(1  +  1^2 )  ∴    ∫_( 0) ^( 1)  ((ln(x  +  1)/(x^2   +  1)) dx   =   (1/2) . (π/4) ln(1  +  1)  ∴    ∫_( 0) ^( 1)  ((ln(x  +  1)/(x^2   +  1)) dx   =   (π/8) ln(2)
$$\mathrm{Note}:\:\:\:\:\mathrm{I}\left(\mathrm{a}\right)\:\:=\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{a}} \:\frac{\mathrm{ln}\left(\mathrm{1}\:\:+\:\:\mathrm{ax}\right)}{\mathrm{1}\:\:+\:\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:\:\:=\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{tan}^{−\:\mathrm{1}} \left(\mathrm{a}\right)\:\mathrm{ln}\left(\mathrm{1}\:\:+\:\:\mathrm{a}^{\mathrm{2}} \right)\: \\ $$$$\mathrm{In}\:\mathrm{our}\:\mathrm{case}:\:\:\:\:\:\mathrm{a}\:\:=\:\:\mathrm{1} \\ $$$$\therefore\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{x}\:\:+\:\:\mathrm{1}\right.}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{1}}\:\mathrm{dx}\:\:\:=\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{tan}^{−\:\mathrm{1}} \left(\mathrm{1}\right)\:\mathrm{ln}\left(\mathrm{1}\:\:+\:\:\mathrm{1}^{\mathrm{2}} \right) \\ $$$$\therefore\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{x}\:\:+\:\:\mathrm{1}\right.}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{1}}\:\mathrm{dx}\:\:\:=\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:.\:\frac{\pi}{\mathrm{4}}\:\mathrm{ln}\left(\mathrm{1}\:\:+\:\:\mathrm{1}\right) \\ $$$$\therefore\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{x}\:\:+\:\:\mathrm{1}\right.}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{1}}\:\mathrm{dx}\:\:\:=\:\:\:\frac{\pi}{\mathrm{8}}\:\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *