Menu Close

D-m-n-2-4-2-e-m-n-2-n-2-4-m-n-R-D-min-




Question Number 224076 by MrAjder last updated on 18/Aug/25
  D=(√((m−(n^2 /4))^2 +(e^m −n)^2 ))+(n^2 /4)(m,n∈R),D_(min) =?
$$ \\ $$$${D}=\sqrt{\left({m}−\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\right)^{\mathrm{2}} +\left({e}^{{m}} −{n}\right)^{\mathrm{2}} }+\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\left({m},{n}\in{R}\right),{D}_{\mathrm{min}} =? \\ $$
Answered by MrAjder last updated on 18/Aug/25
D≥(((e^m −m)+((n^2 /4)−n))/( (√2)))+(n^2 /4)  (QM-AM)  ≥((1+((n^2 /4)−n))/( (√2)))+(n^2 /4)     (e^x ≥1+x)  =((2+(√2))/8)(n−2(√2)+2)^2 +(√2)−1  ≥(√2)−1
$${D}\geq\frac{\left({e}^{{m}} −{m}\right)+\left(\frac{{n}^{\mathrm{2}} }{\mathrm{4}}−{n}\right)}{\:\sqrt{\mathrm{2}}}+\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\:\:\left({Q}\mathrm{M}-\mathrm{AM}\right) \\ $$$$\geq\frac{\mathrm{1}+\left(\frac{{n}^{\mathrm{2}} }{\mathrm{4}}−{n}\right)}{\:\sqrt{\mathrm{2}}}+\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\:\:\:\:\:\left({e}^{{x}} \geq\mathrm{1}+{x}\right) \\ $$$$=\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{8}}\left({n}−\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{2}\right)^{\mathrm{2}} +\sqrt{\mathrm{2}}−\mathrm{1} \\ $$$$\geq\sqrt{\mathrm{2}}−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *