Menu Close

how-to-prove-that-x-9-x-is-not-has-solution-because-x-9-2-x-2-x-2-18x-81-x-2-18x-81-x-81-18-9-2-




Question Number 224095 by fitraha last updated on 19/Aug/25
how to prove that  x + 9 = x is not has solution  because   (x + 9)^2  = x^2   x^2  + 18x + 81 = x^2   18x = −81  x = − ((81)/(18)) = −(9/2)
$${how}\:{to}\:{prove}\:{that}\:\:{x}\:+\:\mathrm{9}\:=\:{x}\:{is}\:{not}\:{has}\:{solution} \\ $$$${because}\: \\ $$$$\left({x}\:+\:\mathrm{9}\right)^{\mathrm{2}} \:=\:{x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} \:+\:\mathrm{18}{x}\:+\:\mathrm{81}\:=\:{x}^{\mathrm{2}} \\ $$$$\mathrm{18}{x}\:=\:−\mathrm{81} \\ $$$${x}\:=\:−\:\frac{\mathrm{81}}{\mathrm{18}}\:=\:−\frac{\mathrm{9}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 19/Aug/25
(−5)^2 =(5)^2  doesn′t mean −5=5.
$$\left(−\mathrm{5}\right)^{\mathrm{2}} =\left(\mathrm{5}\right)^{\mathrm{2}} \:{doesn}'{t}\:{mean}\:−\mathrm{5}=\mathrm{5}. \\ $$
Commented by Frix last updated on 19/Aug/25
Squaring introduces false solutions.  x=2  x+5=7  (x+5)^2 =49  x^2 +10x−24=0  x=−12∨x=2
$$\mathrm{Squaring}\:\mathrm{introduces}\:\mathrm{false}\:\mathrm{solutions}. \\ $$$${x}=\mathrm{2} \\ $$$${x}+\mathrm{5}=\mathrm{7} \\ $$$$\left({x}+\mathrm{5}\right)^{\mathrm{2}} =\mathrm{49} \\ $$$${x}^{\mathrm{2}} +\mathrm{10}{x}−\mathrm{24}=\mathrm{0} \\ $$$${x}=−\mathrm{12}\vee{x}=\mathrm{2} \\ $$
Answered by RedstoneGG4 last updated on 19/Aug/25
What are you doing?  x + 9 = x → 9 = 0 ×
$$\mathrm{What}\:\mathrm{are}\:\mathrm{you}\:\mathrm{doing}? \\ $$$$\cancel{{x}}\:+\:\mathrm{9}\:=\:\cancel{{x}}\:\rightarrow\:\mathrm{9}\:=\:\mathrm{0}\:× \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *