Menu Close

Question-224118




Question Number 224118 by fantastic last updated on 21/Aug/25
Answered by mr W last updated on 22/Aug/25
R=12  2b=R ⇒b=(R/2)  (a+b)^2 =b^2 +(R−a)^2   2(R+b)a=R^2   ⇒a=(R^2 /(2(R+b)))=(R/3)  (R−c)^2 −c^2 =(b+c)^2 −(b−c)^2   R^2 =2(R+2b)c  ⇒c=(R^2 /(2(R+2b)))=(R/4)  a+b+c=(R/3)+(R/2)+(R/4)=((13R)/(12))=13 ✓
$${R}=\mathrm{12} \\ $$$$\mathrm{2}{b}={R}\:\Rightarrow{b}=\frac{{R}}{\mathrm{2}} \\ $$$$\left({a}+{b}\right)^{\mathrm{2}} ={b}^{\mathrm{2}} +\left({R}−{a}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}\left({R}+{b}\right){a}={R}^{\mathrm{2}} \\ $$$$\Rightarrow{a}=\frac{{R}^{\mathrm{2}} }{\mathrm{2}\left({R}+{b}\right)}=\frac{{R}}{\mathrm{3}} \\ $$$$\left({R}−{c}\right)^{\mathrm{2}} −{c}^{\mathrm{2}} =\left({b}+{c}\right)^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} \\ $$$${R}^{\mathrm{2}} =\mathrm{2}\left({R}+\mathrm{2}{b}\right){c} \\ $$$$\Rightarrow{c}=\frac{{R}^{\mathrm{2}} }{\mathrm{2}\left({R}+\mathrm{2}{b}\right)}=\frac{{R}}{\mathrm{4}} \\ $$$${a}+{b}+{c}=\frac{{R}}{\mathrm{3}}+\frac{{R}}{\mathrm{2}}+\frac{{R}}{\mathrm{4}}=\frac{\mathrm{13}{R}}{\mathrm{12}}=\mathrm{13}\:\checkmark \\ $$
Commented by fantastic last updated on 22/Aug/25
:)
$$\left.:\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *