Menu Close

Question-224144




Question Number 224144 by mr W last updated on 23/Aug/25
Commented by mr W last updated on 23/Aug/25
find the normal force N between   two solid cylinders with masses  m_1 , m_2  and radii r_1 , r_2  respectively  which rest inside an other thin   walled hollow cylinder with radius  R as shown.   all contact surfaces are frictionless.
$${find}\:{the}\:{normal}\:{force}\:\boldsymbol{{N}}\:{between}\: \\ $$$${two}\:{solid}\:{cylinders}\:{with}\:{masses} \\ $$$$\boldsymbol{{m}}_{\mathrm{1}} ,\:\boldsymbol{{m}}_{\mathrm{2}} \:{and}\:{radii}\:\boldsymbol{{r}}_{\mathrm{1}} ,\:\boldsymbol{{r}}_{\mathrm{2}} \:{respectively} \\ $$$${which}\:{rest}\:{inside}\:{an}\:{other}\:{thin}\: \\ $$$${walled}\:{hollow}\:{cylinder}\:{with}\:{radius} \\ $$$$\boldsymbol{{R}}\:{as}\:{shown}.\: \\ $$$${all}\:{contact}\:{surfaces}\:{are}\:{frictionless}. \\ $$
Answered by mr W last updated on 24/Aug/25
Commented by mr W last updated on 24/Aug/25
say μ_1 =(m_1 /(m_1 +m_2 )), μ_2 =(m_2 /(m_1 +m_2 ))  AD=((m_2 ×AB)/(m_1 +m_2 ))=μ_2 (r_1 +r_2 )  DB=((m_1 ×AB)/(m_1 +m_2 ))=μ_1 (r_1 +r_2 )  μ_2 (R−r_2 )^2 +μ_1 (R−r_1 )^2 =CD^2 +μ_1 μ_2 (r_1 +r_2 )^2   ⇒CD=(√(μ_1 (R−r_1 )^2 +μ_2 (R−r_2 )^2 −μ_1 μ_2 (r_1 +r_2 )^2 ))  ((sin θ)/(DB))=((sin β)/(CD))  ⇒((sin θ)/(sin β))=((μ_1 (r_1 +r_2 ))/(CD))  (N/(sin θ))=((m_2 g)/(sin β))  ⇒N=((m_2 g sin θ)/(sin β))  (N/((m_1 +m_2 )g))=((μ_2  sin θ)/(sin β))      =((μ_1 μ_2 (r_1 +r_2 ))/(CD))      =((μ_1 μ_2 (r_1 +r_2 ))/( (√(μ_1 (R−r_1 )^2 +μ_2 (R−r_2 )^2 −μ_1 μ_2 (r_1 +r_2 )^2 ))))      =((μ_1 μ_2 )/( (√(μ_1 (((R−r_1 )/(r_1 +r_2 )))^2 +μ_2 (((R−r_2 )/(r_1 +r_2 )))^2 −μ_1 μ_2 ))))  ⇒N=((μ_1 μ_2 (m_1 +m_2 )g)/( (√(μ_1 (((R−r_1 )/(r_1 +r_2 )))^2 +μ_2 (((R−r_2 )/(r_1 +r_2 )))^2 −μ_1 μ_2 ))))  (N_1 /((m_1 +m_2 )g))=((sin θ)/(sin (α+β)))=((sin θ sin β)/(sin β sin (α+β)))      =((μ_1 AB)/(CD))×((AC)/(AB))=((μ_1 AC)/(CD))      =((μ_1 (R−r_1 ))/( (√(μ_1 (R−r_1 )^2 +μ_2 (R−r_2 )^2 −μ_1 μ_2 (r_1 +r_2 )^2 ))))  ⇒N_1 =(((R−r_1 )m_1 g)/( (√(μ_1 (R−r_1 )^2 +μ_2 (R−r_2 )^2 −μ_1 μ_2 (r_1 +r_2 )^2 ))))  similarly  ⇒N_2 =(((R−r_2 )m_2 g)/( (√(μ_1 (R−r_1 )^2 +μ_2 (R−r_2 )^2 −μ_1 μ_2 (r_1 +r_2 )^2 ))))
$${say}\:\mu_{\mathrm{1}} =\frac{{m}_{\mathrm{1}} }{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} },\:\mu_{\mathrm{2}} =\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} } \\ $$$${AD}=\frac{{m}_{\mathrm{2}} ×{AB}}{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} }=\mu_{\mathrm{2}} \left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right) \\ $$$${DB}=\frac{{m}_{\mathrm{1}} ×{AB}}{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} }=\mu_{\mathrm{1}} \left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right) \\ $$$$\mu_{\mathrm{2}} \left({R}−{r}_{\mathrm{2}} \right)^{\mathrm{2}} +\mu_{\mathrm{1}} \left({R}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} ={CD}^{\mathrm{2}} +\mu_{\mathrm{1}} \mu_{\mathrm{2}} \left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\Rightarrow{CD}=\sqrt{\mu_{\mathrm{1}} \left({R}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} +\mu_{\mathrm{2}} \left({R}−{r}_{\mathrm{2}} \right)^{\mathrm{2}} −\mu_{\mathrm{1}} \mu_{\mathrm{2}} \left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{sin}\:\theta}{{DB}}=\frac{\mathrm{sin}\:\beta}{{CD}} \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\beta}=\frac{\mu_{\mathrm{1}} \left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)}{{CD}} \\ $$$$\frac{{N}}{\mathrm{sin}\:\theta}=\frac{{m}_{\mathrm{2}} {g}}{\mathrm{sin}\:\beta} \\ $$$$\Rightarrow{N}=\frac{{m}_{\mathrm{2}} {g}\:\mathrm{sin}\:\theta}{\mathrm{sin}\:\beta} \\ $$$$\frac{{N}}{\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right){g}}=\frac{\mu_{\mathrm{2}} \:\mathrm{sin}\:\theta}{\mathrm{sin}\:\beta} \\ $$$$\:\:\:\:=\frac{\mu_{\mathrm{1}} \mu_{\mathrm{2}} \left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)}{{CD}} \\ $$$$\:\:\:\:=\frac{\mu_{\mathrm{1}} \mu_{\mathrm{2}} \left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)}{\:\sqrt{\mu_{\mathrm{1}} \left({R}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} +\mu_{\mathrm{2}} \left({R}−{r}_{\mathrm{2}} \right)^{\mathrm{2}} −\mu_{\mathrm{1}} \mu_{\mathrm{2}} \left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:=\frac{\mu_{\mathrm{1}} \mu_{\mathrm{2}} }{\:\sqrt{\mu_{\mathrm{1}} \left(\frac{{R}−{r}_{\mathrm{1}} }{{r}_{\mathrm{1}} +{r}_{\mathrm{2}} }\right)^{\mathrm{2}} +\mu_{\mathrm{2}} \left(\frac{{R}−{r}_{\mathrm{2}} }{{r}_{\mathrm{1}} +{r}_{\mathrm{2}} }\right)^{\mathrm{2}} −\mu_{\mathrm{1}} \mu_{\mathrm{2}} }} \\ $$$$\Rightarrow{N}=\frac{\mu_{\mathrm{1}} \mu_{\mathrm{2}} \left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right){g}}{\:\sqrt{\mu_{\mathrm{1}} \left(\frac{{R}−{r}_{\mathrm{1}} }{{r}_{\mathrm{1}} +{r}_{\mathrm{2}} }\right)^{\mathrm{2}} +\mu_{\mathrm{2}} \left(\frac{{R}−{r}_{\mathrm{2}} }{{r}_{\mathrm{1}} +{r}_{\mathrm{2}} }\right)^{\mathrm{2}} −\mu_{\mathrm{1}} \mu_{\mathrm{2}} }} \\ $$$$\frac{{N}_{\mathrm{1}} }{\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right){g}}=\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\left(\alpha+\beta\right)}=\frac{\mathrm{sin}\:\theta\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\beta\:\mathrm{sin}\:\left(\alpha+\beta\right)} \\ $$$$\:\:\:\:=\frac{\mu_{\mathrm{1}} {AB}}{{CD}}×\frac{{AC}}{{AB}}=\frac{\mu_{\mathrm{1}} {AC}}{{CD}} \\ $$$$\:\:\:\:=\frac{\mu_{\mathrm{1}} \left({R}−{r}_{\mathrm{1}} \right)}{\:\sqrt{\mu_{\mathrm{1}} \left({R}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} +\mu_{\mathrm{2}} \left({R}−{r}_{\mathrm{2}} \right)^{\mathrm{2}} −\mu_{\mathrm{1}} \mu_{\mathrm{2}} \left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} }} \\ $$$$\Rightarrow{N}_{\mathrm{1}} =\frac{\left({R}−{r}_{\mathrm{1}} \right){m}_{\mathrm{1}} {g}}{\:\sqrt{\mu_{\mathrm{1}} \left({R}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} +\mu_{\mathrm{2}} \left({R}−{r}_{\mathrm{2}} \right)^{\mathrm{2}} −\mu_{\mathrm{1}} \mu_{\mathrm{2}} \left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} }} \\ $$$${similarly} \\ $$$$\Rightarrow{N}_{\mathrm{2}} =\frac{\left({R}−{r}_{\mathrm{2}} \right){m}_{\mathrm{2}} {g}}{\:\sqrt{\mu_{\mathrm{1}} \left({R}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} +\mu_{\mathrm{2}} \left({R}−{r}_{\mathrm{2}} \right)^{\mathrm{2}} −\mu_{\mathrm{1}} \mu_{\mathrm{2}} \left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} }} \\ $$
Commented by mr W last updated on 24/Aug/25
Commented by fantastic last updated on 24/Aug/25
Sir how did you draw this?  it looks very accurate
$${Sir}\:{how}\:{did}\:{you}\:{draw}\:{this}? \\ $$$${it}\:{looks}\:{very}\:{accurate} \\ $$
Commented by mr W last updated on 26/Aug/25
i don′t have or use any special   technique or equipment, except one  of my fingers.
$${i}\:{don}'{t}\:{have}\:{or}\:{use}\:{any}\:{special}\: \\ $$$${technique}\:{or}\:{equipment},\:{except}\:{one} \\ $$$${of}\:{my}\:{fingers}. \\ $$
Commented by fantastic last updated on 24/Aug/25
SERIOUSLY??  I think it will take me a lot of  time to master inkredible like you
$${SERIOUSLY}?? \\ $$$${I}\:{think}\:{it}\:{will}\:{take}\:{me}\:{a}\:{lot}\:{of} \\ $$$${time}\:{to}\:{master}\:{inkredible}\:{like}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *