Menu Close

Calculate-I-sin-x-1-sin-x-dx-




Question Number 224182 by CrispyXYZ last updated on 24/Aug/25
Calculate  I=∫ ((sin x)/(1+ sin x)) dx
$$\mathrm{Calculate} \\ $$$${I}=\int\:\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\:\mathrm{sin}\:{x}}\:\mathrm{d}{x} \\ $$
Answered by Frix last updated on 24/Aug/25
∫((sin x)/(1+sin x))dx=∫(((1−sin x)sin x)/((1−sin x)(1+sin x)))dx=  =∫((sin x −sin^2  x)/(cos^2  x))dx=  =∫dx−∫(dx/(cos^2  x))+∫((sin x)/(cos^2  x))dx=  =x−tan x +(1/(cos x))+C
$$\int\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{sin}\:{x}}{dx}=\int\frac{\left(\mathrm{1}−\mathrm{sin}\:{x}\right)\mathrm{sin}\:{x}}{\left(\mathrm{1}−\mathrm{sin}\:{x}\right)\left(\mathrm{1}+\mathrm{sin}\:{x}\right)}{dx}= \\ $$$$=\int\frac{\mathrm{sin}\:{x}\:−\mathrm{sin}^{\mathrm{2}} \:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}}{dx}= \\ $$$$=\int{dx}−\int\frac{{dx}}{\mathrm{cos}^{\mathrm{2}} \:{x}}+\int\frac{\mathrm{sin}\:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}}{dx}= \\ $$$$={x}−\mathrm{tan}\:{x}\:+\frac{\mathrm{1}}{\mathrm{cos}\:{x}}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *