Menu Close

x-y-7-x-y-5-Find-x-y-




Question Number 224234 by MirHasibulHossain last updated on 27/Aug/25
(√x)+(√y)=7  (√(x+y))=5  Find (x,y).
$$\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}=\mathrm{7} \\ $$$$\sqrt{\mathrm{x}+\mathrm{y}}=\mathrm{5} \\ $$$$\mathrm{Find}\:\left(\mathrm{x},\mathrm{y}\right). \\ $$
Answered by Frix last updated on 27/Aug/25
With these numbers it′s obvious:  x=9∧y=16  x=16∧y=9
$$\mathrm{With}\:\mathrm{these}\:\mathrm{numbers}\:\mathrm{it}'\mathrm{s}\:\mathrm{obvious}: \\ $$$${x}=\mathrm{9}\wedge{y}=\mathrm{16} \\ $$$${x}=\mathrm{16}\wedge{y}=\mathrm{9} \\ $$
Answered by nikif99 last updated on 27/Aug/25
((√x)+(√y))^2 =7^2 ⇔x+y+2(√(xy))=59 (1)  ((√(x+y)))^2 =5^2 ⇔x+y=25 (2)  (1)(2)⇒25+2(√(xy))=49⇔2(√(xy))=24⇔  (√(xy))=12⇔xy=144 (3)  (2)(3)⇒(x, y)=(9, 16), (16, 9)
$$\left(\sqrt{{x}}+\sqrt{{y}}\right)^{\mathrm{2}} =\mathrm{7}^{\mathrm{2}} \Leftrightarrow{x}+{y}+\mathrm{2}\sqrt{{xy}}=\mathrm{59}\:\left(\mathrm{1}\right) \\ $$$$\left(\sqrt{{x}+{y}}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \Leftrightarrow{x}+{y}=\mathrm{25}\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)\left(\mathrm{2}\right)\Rightarrow\mathrm{25}+\mathrm{2}\sqrt{{xy}}=\mathrm{49}\Leftrightarrow\mathrm{2}\sqrt{{xy}}=\mathrm{24}\Leftrightarrow \\ $$$$\sqrt{{xy}}=\mathrm{12}\Leftrightarrow{xy}=\mathrm{144}\:\left(\mathrm{3}\right) \\ $$$$\left(\mathrm{2}\right)\left(\mathrm{3}\right)\Rightarrow\left({x},\:{y}\right)=\left(\mathrm{9},\:\mathrm{16}\right),\:\left(\mathrm{16},\:\mathrm{9}\right) \\ $$
Answered by mehdee7396 last updated on 27/Aug/25
x+y+2(√(xy))=49⇒(√(xy))=12  ⇒s=25  &  p=144  ⇒u^2 −25u+144=0⇒u=((25±7)/2)  ⇒u=16 & 9⇒(16,9) or  (9,16)
$${x}+{y}+\mathrm{2}\sqrt{{xy}}=\mathrm{49}\Rightarrow\sqrt{{xy}}=\mathrm{12} \\ $$$$\Rightarrow{s}=\mathrm{25}\:\:\&\:\:{p}=\mathrm{144} \\ $$$$\Rightarrow{u}^{\mathrm{2}} −\mathrm{25}{u}+\mathrm{144}=\mathrm{0}\Rightarrow{u}=\frac{\mathrm{25}\pm\mathrm{7}}{\mathrm{2}} \\ $$$$\Rightarrow{u}=\mathrm{16}\:\&\:\mathrm{9}\Rightarrow\left(\mathrm{16},\mathrm{9}\right)\:{or}\:\:\left(\mathrm{9},\mathrm{16}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *