Question Number 224233 by Jgrads last updated on 27/Aug/25

$$\mathrm{Prove}\:\mathrm{that}\:\forall\mathrm{n}\geqslant\mathrm{2} \\ $$$$\mathrm{e}^{\mathrm{2n}−\mathrm{1}} −\mathrm{1}\:\geqslant\:\mathrm{2n}\left(\mathrm{2n}−\mathrm{1}\right) \\ $$
Answered by fkwow344 last updated on 27/Aug/25

$$\mathrm{Let}'\mathrm{s}\:{f}\left({x}\right)={e}^{\mathrm{2}{x}−\mathrm{1}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1} \\ $$$${f}^{\left(\mathrm{1}\right)} \left({x}\right)=\mathrm{2}{e}^{\mathrm{2}{x}−\mathrm{1}} −\mathrm{8}{x}+\mathrm{2} \\ $$$${f}^{\left(\mathrm{2}\right)} \left({x}\right)=\mathrm{4}{e}^{\mathrm{2}{x}−\mathrm{1}} −\mathrm{8}=\mathrm{4}\left({e}^{\mathrm{2}{x}−\mathrm{1}} −\mathrm{2}\right) \\ $$$${f}^{\left(\mathrm{2}\right)} \left(\mathrm{2}\right)=\mathrm{4}\left({e}^{\mathrm{3}} −\mathrm{2}\right)\geq\mathrm{0} \\ $$$$\therefore\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{convex}\:\:\mathrm{function}\:\mathrm{when}\:\:{x}\geq\mathrm{2} \\ $$$${f}^{\left(\mathrm{1}\right)} \left(\mathrm{1}\right)=\mathrm{2}{e}−\mathrm{6}<\mathrm{0} \\ $$$${f}^{\left(\mathrm{1}\right)} \left(\mathrm{2}\right)=\mathrm{2}{e}^{\mathrm{3}} −\mathrm{14}>\mathrm{0} \\ $$$${f}^{\left(\mathrm{1}\right)} \left(\mathrm{2}\right)>\mathrm{0}\:,\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{increase}\:\mathrm{function}\:{x}\geq\mathrm{2}\:, \\ $$$$\mathrm{and}\:\:{f}\left(\mathrm{1}\right){f}\left(\mathrm{2}\right)<\mathrm{0}\: \\ $$$$\therefore\:\mathrm{for}\:\mathrm{all}\:{N}\geq\mathrm{2} \\ $$$${e}^{\mathrm{2}{N}−\mathrm{1}} −\mathrm{1}\geq\mathrm{2}{N}\left(\mathrm{2}{N}−\mathrm{1}\right)\:\Box \\ $$