Menu Close

Show-that-I-0-1-0-1-ln-1-xy-ln-1-1-x-1-y-1-x-1-y-x-y-dxdy-I-3-70-351-280-3




Question Number 224373 by Nicholas666 last updated on 05/Sep/25
                            Show that ;       I = ∫_(  0) ^(  1) ∫_(  0) ^( 1)   ((ln(1+(√(xy))) ln(1+ (√((1−x)/(1−y)))))/( (√(1−x))  (√(1−y))  (x+y)))  dxdy               I = ζ(3)−((70)/(351))−((280)/(351)) ln 2−((40)/(117)) ln^2  2 +((412)/(351)) ln^3  2 + ((167)/(2106)) π^2  ln 2
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}\:; \\ $$$$\:\:\:\:\:\mathcal{I}\:=\:\underset{\:\:\mathrm{0}} {\overset{\:\:\mathrm{1}} {\int}}\underset{\:\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\:\frac{\mathrm{ln}\left(\mathrm{1}+\sqrt{{xy}}\right)\:\mathrm{ln}\left(\mathrm{1}+\:\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}−{y}}}\right)}{\:\sqrt{\mathrm{1}−{x}}\:\:\sqrt{\mathrm{1}−{y}}\:\:\left({x}+{y}\right)}\:\:{dxdy}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathcal{I}\:=\:\zeta\left(\mathrm{3}\right)−\frac{\mathrm{70}}{\mathrm{351}}−\frac{\mathrm{280}}{\mathrm{351}}\:\mathrm{ln}\:\mathrm{2}−\frac{\mathrm{40}}{\mathrm{117}}\:\mathrm{ln}^{\mathrm{2}} \:\mathrm{2}\:+\frac{\mathrm{412}}{\mathrm{351}}\:\mathrm{ln}^{\mathrm{3}} \:\mathrm{2}\:+\:\frac{\mathrm{167}}{\mathrm{2106}}\:\pi^{\mathrm{2}} \:\mathrm{ln}\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *