Question Number 224531 by ajfour last updated on 17/Sep/25

Commented by ajfour last updated on 17/Sep/25
A plank inclined at angle phi to the level ground has coefficient of friction such that it just permits enough friction for a ring of mass M and radius R to purely roll down the fixed incline. Now our plan is to weld a bead at the periphery of the ring so that this new ring plus bead combination when olaced upright on the same incline only slides down not rotating at all. we hsve to find the minimum bead mass.
assume coefficient of static and kinetic
friction to be same.
Commented by mahdipoor last updated on 17/Sep/25

$${i}\:{get}\: \\ $$$${m}=\frac{{M}}{\frac{\mathrm{2}{sin}\left(\theta−\phi\right)}{{tan}\phi}+{cos}\left(\theta−\phi\right)−\mathrm{1}} \\ $$
Commented by ajfour last updated on 17/Sep/25

$${looks}\:{genuine}.\:{i}\:{shall}\:{attempt}\:{too}, \\ $$$${its}\:{due}.\:{Google}\:{Gemini}\:{says} \\ $$$${m}=\frac{{M}\mathrm{sin}\:\phi}{\mathrm{2}−\mathrm{sin}\:\phi} \\ $$
Commented by mr W last updated on 17/Sep/25

$${i}\:{think}\:{mahdipoor}\:{sir}\:{is}\:{right}. \\ $$
Answered by mahdipoor last updated on 17/Sep/25

$$\mathrm{Consider}\:\mathrm{an}\:\mathrm{oblique}\:\mathrm{coordinate}\:\mathrm{system} \\ $$$$\mathrm{cenered}\:\mathrm{at}\:\mathrm{the}\:\mathrm{ring}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{x}−\mathrm{axis} \\ $$$$\mathrm{is}\:\mathrm{aigned}\:\mathrm{with}\:\mathrm{the}\:\mathrm{slope}\:\mathrm{direction}. \\ $$$${center}\:{of}\:{mass}\:: \\ $$$${CM}=−{S}\left({cos}\psi,{sin}\psi\right) \\ $$$${S}=\frac{{mR}}{{M}+{m}}\:\:\:\:\psi=\theta−\mathrm{90}−\phi \\ $$$${for}\:{only}\:{slip}\:\rightarrow\:\alpha=\mathrm{0}\Rightarrow\Sigma{M}_{{CM}} ={I}_{{CM}} \alpha=\mathrm{0} \\ $$$$\left.\mathrm{1}\right){for}\:{Weight}\:\left({mg},{Mg}\right)\:\rightarrow\:\sum_{\mathrm{1}} {M}_{{CM}} =\mathrm{0} \\ $$$$\left.\mathrm{2}\right){for}\:{N}\:\&\:{f}=\mu{N}\:\rightarrow\: \\ $$$${min}\:\mu=\frac{{tan}\phi}{\mathrm{2}}\:\left({when}\:{m}=\mathrm{0},\:{ring}\:{no}\:{slip}\right) \\ $$$${N}={g}\left({m}+{M}\right){cos}\phi \\ $$$$\sum_{\mathrm{2}} {M}_{{CM}} =\boldsymbol{\mathrm{d}}×\Sigma\boldsymbol{\mathrm{F}}=\mathrm{0} \\ $$$$\left({S}.{cos}\psi\:,\:−{S}.{sin}\psi−{R}\right)×\left(−\mu{N},{N}\right)= \\ $$$${N}\left({Scos}\psi−\frac{{tan}\phi}{\mathrm{2}}\left({Ssin}\psi+{R}\right)\right)=\mathrm{0}\: \\ $$$$\Rightarrow{mRcos}\psi=\frac{{tan}\phi}{\mathrm{2}}\left({mRsin}\psi+\left({M}+{m}\right){R}\right) \\ $$$$\Rightarrow{m}=\frac{{M}}{\frac{\mathrm{2}{cos}\psi}{{tan}\phi}−{sin}\psi−\mathrm{1}}=\frac{{M}}{\frac{\mathrm{2}{sin}\left(\theta−\phi\right)}{{tan}\phi}+{cos}\left(\theta−\psi\right)−\mathrm{1}} \\ $$
Answered by mr W last updated on 17/Sep/25

Commented by mr W last updated on 17/Sep/25

Commented by mr W last updated on 17/Sep/25

$$\boldsymbol{{case}}\:\mathrm{1}:\:\boldsymbol{{ring}}\:\boldsymbol{{without}}\:\boldsymbol{{bead}}\:\boldsymbol{{mass}} \\ $$$${I}={Mr}^{\mathrm{2}} \\ $$$${pure}\:{rolling}\:\Rightarrow\alpha=\frac{{a}}{{r}} \\ $$$${f}=\mu{N}=\mu{Mg}\:\mathrm{cos}\:\phi \\ $$$${Ma}={Mg}\:\mathrm{sin}\:\phi−{f} \\ $$$$\Rightarrow{a}={g}\left(\mathrm{sin}\:\phi−\mu\:\mathrm{cos}\:\phi\right) \\ $$$${I}\alpha={rf} \\ $$$${Mr}^{\mathrm{2}} ×\frac{{g}\left(\mathrm{sin}\:\phi−\mu\:\mathrm{cos}\:\phi\right)}{{r}}={r}\mu{Mg}\:\mathrm{cos}\:\phi \\ $$$$\mathrm{sin}\:\phi−\mu\:\mathrm{cos}\:\phi=\mu\:\mathrm{cos}\:\phi \\ $$$$\Rightarrow\mu=\frac{\mathrm{tan}\:\phi}{\mathrm{2}} \\ $$$$ \\ $$$$\boldsymbol{{case}}\:\mathrm{2}:\:\boldsymbol{{ring}}\:\boldsymbol{{with}}\:\boldsymbol{{bead}}\:\boldsymbol{{mass}} \\ $$$${e}=\frac{{mr}}{{m}+{M}} \\ $$$$\mathrm{tan}\:\varphi=\mu=\frac{\mathrm{tan}\:\phi}{\mathrm{2}} \\ $$$${such}\:{that}\:{no}\:{rolling}, \\ $$$$\frac{{e}}{\mathrm{sin}\:\varphi}=\frac{{r}}{\mathrm{sin}\:\left(\theta+\varphi\right)} \\ $$$$\frac{{mr}}{\left({m}+{M}\right)\:\mathrm{sin}\:\varphi}=\frac{{r}}{\mathrm{sin}\:\theta\:\mathrm{cos}\:\varphi+\mathrm{cos}\:\theta\:\mathrm{sin}\:\varphi} \\ $$$$\frac{{m}}{{m}+{M}}=\frac{\mathrm{1}}{\frac{\mathrm{sin}\:\theta}{\mathrm{tan}\:\varphi}+\mathrm{cos}\:\theta} \\ $$$$\frac{{M}}{{m}}+\mathrm{1}=\frac{\mathrm{sin}\:\theta}{\mathrm{tan}\:\varphi}+\mathrm{cos}\:\theta \\ $$$$\frac{{M}}{{m}}=\frac{\mathrm{2}\:\mathrm{sin}\:\theta}{\mathrm{tan}\:\phi}+\mathrm{cos}\:\theta−\mathrm{1}=\Phi,\:{say} \\ $$$${m}_{{min}} \:\Leftrightarrow\:\Phi_{{max}} \\ $$$$\frac{{d}\Phi}{{d}\theta}=\frac{\mathrm{2}\:\mathrm{cos}\:\theta}{\mathrm{tan}\:\phi}−\mathrm{sin}\:\theta=\mathrm{0} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{\mathrm{2}}{\mathrm{tan}\:\phi}=\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}\:\Rightarrow\theta+\varphi=\frac{\pi}{\mathrm{2}}\:! \\ $$$$\Phi_{{max}} =\frac{\mathrm{2}}{\mathrm{tan}\:\phi}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{4}+\mathrm{tan}^{\mathrm{2}} \:\phi}}+\frac{\mathrm{tan}\:\phi}{\:\sqrt{\mathrm{4}+\mathrm{tan}^{\mathrm{2}} \:\phi}}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{4}+\mathrm{tan}^{\mathrm{2}} \:\phi}{\:\mathrm{tan}\:\phi\sqrt{\mathrm{4}+\mathrm{tan}^{\mathrm{2}} \:\phi}}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{4}+\mathrm{tan}^{\mathrm{2}} \:\phi}−\mathrm{tan}\:\phi}{\mathrm{tan}\:\phi} \\ $$$$\Rightarrow\frac{{m}_{{min}} }{{M}}=\frac{\mathrm{tan}\:\phi}{\:\sqrt{\mathrm{4}+\mathrm{tan}^{\mathrm{2}} \:\phi}−\mathrm{tan}\:\phi} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{tan}\:\phi\:\left(\sqrt{\mathrm{4}+\mathrm{tan}^{\mathrm{2}} \:\phi}+\mathrm{tan}\:\phi\right)}{\:\mathrm{4}} \\ $$