Question Number 224529 by ajfour last updated on 17/Sep/25

Commented by ajfour last updated on 17/Sep/25

$${Find}\:{r}/{R}\:{if}\:{r}_{\mathrm{1}} ={r}_{\mathrm{2}} ={r}_{\mathrm{3}} \:{and}\:{R}_{\mathrm{2}} ={R}_{\mathrm{1}} . \\ $$
Answered by mahdipoor last updated on 17/Sep/25

$${circle}\:\Rightarrow \\ $$$${c}=\left(\mathrm{0},{r}\right),{r} \\ $$$${c}_{+} ,{c}_{−} =\left(\pm{b},{r}\right),{r} \\ $$$${C}_{+} ,{C}_{−} =\left(\pm{a},\mathrm{0}\right),{R} \\ $$$${C}_{+} {c}_{−} ={C}_{−} {c}_{+} ={R}+{r}=\sqrt{\left({b}+{a}\right)^{\mathrm{2}} +\left({r}\right)^{\mathrm{2}} } \\ $$$${C}_{+} {c}={C}_{−} {c}={R}−{r}=\sqrt{\left({a}\right)^{\mathrm{2}} +\left({r}\right)^{\mathrm{2}} } \\ $$$${C}_{+} {c}_{+} ={C}_{−} {c}_{−} ={R}−{r}=\sqrt{\left({b}−{a}\right)^{\mathrm{2}} +\left({r}\right)^{\mathrm{2}} } \\ $$$$\begin{cases}{{R}^{\mathrm{2}} +\mathrm{2}{Rr}={b}^{\mathrm{2}} +{a}^{\mathrm{2}} +\mathrm{2}{ab}\:\:\:\mathrm{1}}\\{{R}^{\mathrm{2}} −\mathrm{2}{Rr}={a}^{\mathrm{2}} \:\:\:\mathrm{2}\:\:}\\{{R}^{\mathrm{2}} −\mathrm{2}{Rr}={b}^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}{ba}\:\:\:\mathrm{3}}\end{cases} \\ $$$$\mathrm{2},\mathrm{3}\Rightarrow{b}^{\mathrm{2}} −\mathrm{2}{ba}=\mathrm{0}={b}\left({b}−\mathrm{2}{a}\right)\Rightarrow{b}=\mathrm{2}{a} \\ $$$$\mathrm{1},\mathrm{2}\Rightarrow\begin{cases}{{R}^{\mathrm{2}} +\mathrm{2}{Rr}=\mathrm{9}{a}^{\mathrm{2}} }\\{{R}^{\mathrm{2}} −\mathrm{2}{Rr}={a}^{\mathrm{2}} }\end{cases}\Rightarrow{R}^{\mathrm{2}} +\mathrm{2}{Rr}=\mathrm{9}{R}^{\mathrm{2}} −\mathrm{18}{Rr} \\ $$$$\Rightarrow\mathrm{8}{R}^{\mathrm{2}} −\mathrm{20}{Rr}=\mathrm{0}=\mathrm{4}{R}\left(\mathrm{2}{R}−\mathrm{5}{r}\right)=\mathrm{0} \\ $$$$\Rightarrow\frac{{r}}{{R}}=\frac{\mathrm{2}}{\mathrm{5}} \\ $$
Commented by ajfour last updated on 17/Sep/25

$${yes},\:{thanks}.\:{Thats}\:{correct}. \\ $$
Answered by ajfour last updated on 18/Sep/25

Commented by ajfour last updated on 18/Sep/25

$${E}\:{is}\:{center}\:{of}\:{left}\:{semicircle} \\ $$$${while}\:{A}\:{is}\:{center}\:{of}\:{right}\:{one}. \\ $$$${so}\:\:{OE}={OA}={AB}={t} \\ $$$${EC}={R}+{r} \\ $$$${AC}={R}−{r} \\ $$$${t}^{\mathrm{2}} =\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} \\ $$$$\left(\mathrm{3}{t}\right)^{\mathrm{2}} =\left({R}+{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{9}\left({R}−{r}\right)^{\mathrm{2}} −\mathrm{9}{r}^{\mathrm{2}} =\left({R}+{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{8}{R}^{\mathrm{2}} =\mathrm{20}{Rr} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\frac{{r}}{{R}}=\frac{\mathrm{2}}{\mathrm{5}} \\ $$