Menu Close

a-x-m-a-y-n-a-2-m-y-n-x-z-prove-xyz-1-




Question Number 224539 by fantastic last updated on 17/Sep/25
a^x =m, a^y =n ,a^2 =(m^y n^x )^z   prove xyz=1
$${a}^{{x}} ={m},\:{a}^{{y}} ={n}\:,{a}^{\mathrm{2}} =\left({m}^{{y}} {n}^{{x}} \right)^{{z}} \\ $$$${prove}\:{xyz}=\mathrm{1} \\ $$
Answered by som(math1967) last updated on 17/Sep/25
a^x =m⇒a^(xy) =m^y    a^y =n⇒a^(xy) =n^x    a^2 =(m^y n^x )^z   ⇒a^2 =(a^(xy) ×a^(xy) )^z   ⇒a^2 =a^(2xyz)   ⇒2xyz=2    ∴xyz=1
$${a}^{{x}} ={m}\Rightarrow{a}^{{xy}} ={m}^{{y}} \\ $$$$\:{a}^{{y}} ={n}\Rightarrow{a}^{{xy}} ={n}^{{x}} \\ $$$$\:{a}^{\mathrm{2}} =\left({m}^{{y}} {n}^{{x}} \right)^{{z}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\left({a}^{{xy}} ×{a}^{{xy}} \right)^{{z}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} ={a}^{\mathrm{2}{xyz}} \\ $$$$\Rightarrow\mathrm{2}{xyz}=\mathrm{2}\:\:\:\:\therefore{xyz}=\mathrm{1} \\ $$
Commented by fantastic last updated on 17/Sep/25
thanks sir
$${thanks}\:{sir} \\ $$
Answered by Kademi last updated on 17/Sep/25
  a^2  = (m^y n^x )^z     a^2  = ((a^x )^y (a^y )^x )^z     a^2  = (a^(xy) a^(xy) )^z     a^2  = (a^(xy+xy) )^z     a^2  = (a^(2xy) )^z     a^2  = a^(2xyz)     a^1  = a^(xyz)     1 = xyz
$$\:\:{a}^{\mathrm{2}} \:=\:\left({m}^{{y}} {n}^{{x}} \right)^{{z}} \\ $$$$\:\:{a}^{\mathrm{2}} \:=\:\left(\left({a}^{{x}} \right)^{{y}} \left({a}^{{y}} \right)^{{x}} \right)^{{z}} \\ $$$$\:\:{a}^{\mathrm{2}} \:=\:\left({a}^{{xy}} {a}^{{xy}} \right)^{{z}} \\ $$$$\:\:{a}^{\mathrm{2}} \:=\:\left({a}^{{xy}+{xy}} \right)^{{z}} \\ $$$$\:\:{a}^{\mathrm{2}} \:=\:\left({a}^{\mathrm{2}{xy}} \right)^{{z}} \\ $$$$\:\:{a}^{\mathrm{2}} \:=\:{a}^{\mathrm{2}{xyz}} \\ $$$$\:\:{a}^{\mathrm{1}} \:=\:{a}^{{xyz}} \\ $$$$\:\:\mathrm{1}\:=\:{xyz}\: \\ $$
Commented by fantastic last updated on 17/Sep/25
thanks sir
$${thanks}\:{sir} \\ $$
Answered by Rasheed.Sindhi last updated on 17/Sep/25
a=m^(1/x) ,a=n^(1/y) ,a=(m^y n^x )^(z/2)   a=m^(1/x) =n^(1/y)   a^(xy) =m^y =n^x   a^2 =(m^y n^x )^z   a^2 =(a^(xy) .a^(xy) )^z   a=a^(xyz)   xyz=1
$${a}={m}^{\mathrm{1}/{x}} ,{a}={n}^{\mathrm{1}/{y}} ,{a}=\left({m}^{{y}} {n}^{{x}} \right)^{{z}/\mathrm{2}} \\ $$$${a}={m}^{\frac{\mathrm{1}}{{x}}} ={n}^{\frac{\mathrm{1}}{{y}}} \\ $$$${a}^{{xy}} ={m}^{{y}} ={n}^{{x}} \\ $$$${a}^{\mathrm{2}} =\left({m}^{{y}} {n}^{{x}} \right)^{{z}} \\ $$$${a}^{\mathrm{2}} =\left({a}^{{xy}} .{a}^{{xy}} \right)^{{z}} \\ $$$${a}={a}^{{xyz}} \\ $$$${xyz}=\mathrm{1} \\ $$
Commented by fantastic last updated on 17/Sep/25
ν.ηι^(.) ⊂ε!
$$\nu.\eta\overset{.} {\iota}\subset\epsilon! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *