Menu Close

Y-




Question Number 224606 by gregori last updated on 21/Sep/25
    Y
$$\:\:\:\:\mathrm{Y} \\ $$
Answered by som(math1967) last updated on 21/Sep/25
 ((10sin αsin β)/(cosαcosβ))=9  ⇒((cosαcosβ)/(sinαsinβ))=((10)/9)  ⇒((cosαcosβ+sinαsinβ)/(cosαcosβ−sinαsinβ))=((10+9)/(10−9))  [using comp.and div]  ⇒((cos(α−β))/(cos(α+β)))=((19)/1)  ∴((cos(α+β))/(cos(α−β)))=(1/(19))
$$\:\frac{\mathrm{10sin}\:\alpha\mathrm{sin}\:\beta}{{cos}\alpha{cos}\beta}=\mathrm{9} \\ $$$$\Rightarrow\frac{{cos}\alpha{cos}\beta}{{sin}\alpha{sin}\beta}=\frac{\mathrm{10}}{\mathrm{9}} \\ $$$$\Rightarrow\frac{{cos}\alpha{cos}\beta+{sin}\alpha{sin}\beta}{{cos}\alpha{cos}\beta−{sin}\alpha{sin}\beta}=\frac{\mathrm{10}+\mathrm{9}}{\mathrm{10}−\mathrm{9}} \\ $$$$\left[\boldsymbol{{using}}\:\boldsymbol{{comp}}.\boldsymbol{{and}}\:\boldsymbol{{div}}\right] \\ $$$$\Rightarrow\frac{{cos}\left(\alpha−\beta\right)}{{cos}\left(\alpha+\beta\right)}=\frac{\mathrm{19}}{\mathrm{1}} \\ $$$$\therefore\frac{{cos}\left(\alpha+\beta\right)}{{cos}\left(\alpha−\beta\right)}=\frac{\mathrm{1}}{\mathrm{19}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *