Menu Close

z-r-cos-i-sin-find-z-z-z-z-




Question Number 224739 by thetpainghtun_111 last updated on 30/Sep/25
z = r (cos θ + i sin θ), find (z/z^− ) +(z^− /z).
$$\mathrm{z}\:=\:\mathrm{r}\:\left(\mathrm{cos}\:\theta\:+\:\mathrm{i}\:\mathrm{sin}\:\theta\right),\:\mathrm{find}\:\frac{\mathrm{z}}{\overset{−} {\mathrm{z}}}\:+\frac{\overset{−} {\mathrm{z}}}{\mathrm{z}}. \\ $$
Answered by Frix last updated on 30/Sep/25
z=re^(iθ)  ⇔ z^� =re^(−iθ)   (z/z^� )+(z^� /z)=e^(2iθ) +e^(−2iθ) =          [e^x +e^(−x) =2cosh x]  =2cosh (2iθ) =2cos 2θ
$${z}={r}\mathrm{e}^{\mathrm{i}\theta} \:\Leftrightarrow\:\bar {{z}}={r}\mathrm{e}^{−\mathrm{i}\theta} \\ $$$$\frac{{z}}{\bar {{z}}}+\frac{\bar {{z}}}{{z}}=\mathrm{e}^{\mathrm{2i}\theta} +\mathrm{e}^{−\mathrm{2i}\theta} =\:\:\:\:\:\:\:\:\:\:\left[\mathrm{e}^{{x}} +\mathrm{e}^{−{x}} =\mathrm{2cosh}\:{x}\right] \\ $$$$=\mathrm{2cosh}\:\left(\mathrm{2i}\theta\right)\:=\mathrm{2cos}\:\mathrm{2}\theta \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *