Menu Close

Question-224728




Question Number 224728 by mr W last updated on 30/Sep/25
Commented by fantastic last updated on 30/Sep/25
170??
$$\mathrm{170}?? \\ $$
Commented by mr W last updated on 30/Sep/25
yes
$${yes} \\ $$
Answered by mr W last updated on 01/Oct/25
m,n,p are roots of  (x−α)(x−β)(x−γ)=δ  (x−α)(x−β)(x−γ)−δ=(x−m)(x−n)(x−p)  x^3 −(α+β+γ)x^2 +(αβ+βγ+γα)x−(αβγ+δ)=  x^3 −(m+n+p)x^2 +(mn+np+pm)x−mnp=0  ⇒m+n+p=α+β+γ  ⇒mn+np+pm=αβ+βγ+γα  ⇒mnp=αβγ+δ  (m+n+p)^3 =m^3 +n^3 +p^3 −3mnp+3(m+n+p)(mn+np+pm)  (α+β+γ)^3 =α^3 +β^3 +γ^3 −3αβγ+3(α+β+γ)(αβ+βγ+γα)  ⇒m^3 +n^3 +p^3 −3mnp=α^3 +β^3 +γ^3 −3αβγ  ⇒m^3 +n^3 +p^3 −3(αβγ+δ)=α^3 +β^3 +γ^3 −3αβγ  ⇒m^3 +n^3 +p^3 =α^3 +β^3 +γ^3 +3δ        =(((13))^(1/3) )^3 +(((53))^(1/3) )^3 +(((103))^(1/3) )^3 +3×(1/3)=170
$${m},{n},{p}\:{are}\:{roots}\:{of} \\ $$$$\left({x}−\alpha\right)\left({x}−\beta\right)\left({x}−\gamma\right)=\delta \\ $$$$\left({x}−\alpha\right)\left({x}−\beta\right)\left({x}−\gamma\right)−\delta=\left({x}−{m}\right)\left({x}−{n}\right)\left({x}−{p}\right) \\ $$$${x}^{\mathrm{3}} −\left(\alpha+\beta+\gamma\right){x}^{\mathrm{2}} +\left(\alpha\beta+\beta\gamma+\gamma\alpha\right){x}−\left(\alpha\beta\gamma+\delta\right)= \\ $$$${x}^{\mathrm{3}} −\left({m}+{n}+{p}\right){x}^{\mathrm{2}} +\left({mn}+{np}+{pm}\right){x}−{mnp}=\mathrm{0} \\ $$$$\Rightarrow{m}+{n}+{p}=\alpha+\beta+\gamma \\ $$$$\Rightarrow{mn}+{np}+{pm}=\alpha\beta+\beta\gamma+\gamma\alpha \\ $$$$\Rightarrow{mnp}=\alpha\beta\gamma+\delta \\ $$$$\left({m}+{n}+{p}\right)^{\mathrm{3}} ={m}^{\mathrm{3}} +{n}^{\mathrm{3}} +{p}^{\mathrm{3}} −\mathrm{3}{mnp}+\mathrm{3}\left({m}+{n}+{p}\right)\left({mn}+{np}+{pm}\right) \\ $$$$\left(\alpha+\beta+\gamma\right)^{\mathrm{3}} =\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\gamma^{\mathrm{3}} −\mathrm{3}\alpha\beta\gamma+\mathrm{3}\left(\alpha+\beta+\gamma\right)\left(\alpha\beta+\beta\gamma+\gamma\alpha\right) \\ $$$$\Rightarrow{m}^{\mathrm{3}} +{n}^{\mathrm{3}} +{p}^{\mathrm{3}} −\mathrm{3}{mnp}=\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\gamma^{\mathrm{3}} −\mathrm{3}\alpha\beta\gamma \\ $$$$\Rightarrow{m}^{\mathrm{3}} +{n}^{\mathrm{3}} +{p}^{\mathrm{3}} −\mathrm{3}\left(\alpha\beta\gamma+\delta\right)=\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\gamma^{\mathrm{3}} −\mathrm{3}\alpha\beta\gamma \\ $$$$\Rightarrow{m}^{\mathrm{3}} +{n}^{\mathrm{3}} +{p}^{\mathrm{3}} =\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\gamma^{\mathrm{3}} +\mathrm{3}\delta \\ $$$$\:\:\:\:\:\:=\left(\sqrt[{\mathrm{3}}]{\mathrm{13}}\right)^{\mathrm{3}} +\left(\sqrt[{\mathrm{3}}]{\mathrm{53}}\right)^{\mathrm{3}} +\left(\sqrt[{\mathrm{3}}]{\mathrm{103}}\right)^{\mathrm{3}} +\mathrm{3}×\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{170} \\ $$
Answered by Ghisom_ last updated on 30/Sep/25
u^3 +au^2 +bu+c=0  u∈{j, k, l}  ⇒  v∈{j^3 , k^3 ,l^3 } solve the equation  v^3 +(a^3 −3ab+3c)v^2 −(3abc−b^3 −3c^2 )v+c^3 =0    we have  (u−α)(u−β)(u−γ)−δ=0  ⇒  a=−(α+β+γ)∧b=αβ+βγ+γα∧c=−(αβγ+δ)  ⇒  u^3 −(α^3 +β^3 +γ^3 +3δ)u^2 +Qu+R=0  ⇒  answer is 13+53+103+1=170
$${u}^{\mathrm{3}} +{au}^{\mathrm{2}} +{bu}+{c}=\mathrm{0} \\ $$$${u}\in\left\{{j},\:{k},\:{l}\right\} \\ $$$$\Rightarrow \\ $$$${v}\in\left\{{j}^{\mathrm{3}} ,\:{k}^{\mathrm{3}} ,{l}^{\mathrm{3}} \right\}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$${v}^{\mathrm{3}} +\left({a}^{\mathrm{3}} −\mathrm{3}{ab}+\mathrm{3}{c}\right){v}^{\mathrm{2}} −\left(\mathrm{3}{abc}−{b}^{\mathrm{3}} −\mathrm{3}{c}^{\mathrm{2}} \right){v}+{c}^{\mathrm{3}} =\mathrm{0} \\ $$$$ \\ $$$$\mathrm{we}\:\mathrm{have} \\ $$$$\left({u}−\alpha\right)\left({u}−\beta\right)\left({u}−\gamma\right)−\delta=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${a}=−\left(\alpha+\beta+\gamma\right)\wedge{b}=\alpha\beta+\beta\gamma+\gamma\alpha\wedge{c}=−\left(\alpha\beta\gamma+\delta\right) \\ $$$$\Rightarrow \\ $$$${u}^{\mathrm{3}} −\left(\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\gamma^{\mathrm{3}} +\mathrm{3}\delta\right){u}^{\mathrm{2}} +{Qu}+{R}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\mathrm{answer}\:\mathrm{is}\:\mathrm{13}+\mathrm{53}+\mathrm{103}+\mathrm{1}=\mathrm{170} \\ $$
Commented by mr W last updated on 01/Oct/25
��

Leave a Reply

Your email address will not be published. Required fields are marked *