Question Number 224763 by behi834171 last updated on 02/Oct/25

Commented by Ghisom_ last updated on 03/Oct/25

$$\mathrm{min}\:{f}\left({x},\:{y}\right)\:\mathrm{is}\:\approx\mathrm{3}.\mathrm{67113410}\:\mathrm{at} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:=\begin{pmatrix}{\frac{\mathrm{5}\sqrt{\mathrm{6}}−\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{7}}}\\{\mathrm{3}\sqrt{\mathrm{10}}−\mathrm{5}\sqrt{\mathrm{3}}}\end{pmatrix} \\ $$
Commented by behi834171 last updated on 04/Oct/25

$${thank}\:{you}\:{very}\:{much}\:{sir}. \\ $$$${please}\:{send}\:{your}\:{method},{if}\:{possible}. \\ $$
Commented by Ghisom_ last updated on 04/Oct/25

$$\frac{\partial{f}}{\partial{x}}=\mathrm{0}\:\Rightarrow\:\mathrm{solve}\:\mathrm{for}\:{x} \\ $$$$\frac{\partial{f}}{\partial{y}}=\mathrm{0}\:\Rightarrow\:\mathrm{solve}\:\mathrm{for}\:{y} \\ $$$$\mathrm{insert}\:{y}\:\left(\mathrm{or}\right)\:{x}\:\mathrm{and}\:\mathrm{solve} \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{post}\:\mathrm{the}\:\mathrm{complete}\:\mathrm{path}\:\mathrm{later} \\ $$
Answered by mr W last updated on 06/Oct/25

Commented by mr W last updated on 06/Oct/25

$${i}'{ve}\:{developed}\:{following}\:{geometrical} \\ $$$${solution}. \\ $$$${with}\:{a}=\sqrt{\mathrm{3}},\:{b}=\sqrt{\mathrm{5}} \\ $$$${f}\left({x},{y}\right)=\sqrt{{x}^{\mathrm{2}} −\sqrt{\mathrm{2}}{ax}+{a}^{\mathrm{2}} }+\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\sqrt{\mathrm{2}}{xy}}+\sqrt{{y}^{\mathrm{2}} −\sqrt{\mathrm{2}}{by}+{b}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{ax}\:\mathrm{cos}\:\mathrm{45}°+{a}^{\mathrm{2}} }+\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xy}\:\mathrm{cos}\:\mathrm{45}°}+\sqrt{{y}^{\mathrm{2}} −\mathrm{2}{by}\:\mathrm{cos}\:\mathrm{45}°+{b}^{\mathrm{2}} } \\ $$$$\:\:\:\:={AC}+{CD}+{DB} \\ $$$${f}\left({x},{y}\right)_{{min}} \:{is}\:{the}\:{shortest}\:{path}\:{from}\:{A}\:{to}\:{B}. \\ $$$${f}\left({x},{y}\right)_{{min}} ={AB}={d}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\mathrm{135}°} \\ $$$$\:\:\:\:\:\:=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\sqrt{\mathrm{2}}{ab}} \\ $$$$\:\:\:\:\:\:=\sqrt{\mathrm{3}+\mathrm{5}+\sqrt{\mathrm{2}×\mathrm{3}×\mathrm{5}}}=\sqrt{\mathrm{8}+\sqrt{\mathrm{30}}}\approx\mathrm{3}.\mathrm{671134} \\ $$$$ \\ $$$$\frac{\mathrm{sin}\:\alpha}{{b}}=\frac{\mathrm{sin}\:\beta}{{a}}=\frac{\mathrm{sin}\:\mathrm{135}°}{{d}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}{d}} \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\frac{{b}}{\:\sqrt{\mathrm{2}}{d}},\:\mathrm{sin}\:\beta=\frac{{a}}{\:\sqrt{\mathrm{2}}{d}} \\ $$$$\frac{{x}}{\mathrm{sin}\:\alpha}=\frac{{a}}{\mathrm{sin}\:\left(\mathrm{90}°+\beta\right)} \\ $$$$\Rightarrow{x}=\frac{{a}\:\mathrm{sin}\:\alpha}{\mathrm{cos}\:\beta}=\frac{{ab}}{\:\sqrt{\mathrm{2}}{d}×\sqrt{\mathrm{1}−\left(\frac{{a}}{\:\sqrt{\mathrm{2}}{d}}\right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\:\:=\frac{{ab}}{\:\sqrt{\mathrm{2}{d}^{\mathrm{2}} −{a}^{\mathrm{2}} }}=\frac{{ab}}{\:\sqrt{{a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{2}}{ab}}} \\ $$$$\:\:\:\:\:\:\:=\frac{{ab}}{{a}+\sqrt{\mathrm{2}}{b}} \\ $$$$\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{3}×\mathrm{5}}}{\:\sqrt{\mathrm{3}}+\sqrt{\mathrm{10}}}=\frac{\mathrm{5}\sqrt{\mathrm{6}}−\mathrm{3}\sqrt{\mathrm{5}}}{\:\mathrm{7}} \\ $$$${similarly} \\ $$$${y}=\frac{{ab}}{\:\sqrt{\mathrm{2}}{a}+{b}} \\ $$$$\:\:\:=\frac{\sqrt{\mathrm{3}×\mathrm{5}}}{\:\sqrt{\mathrm{6}}+\sqrt{\mathrm{5}}}=\mathrm{3}\sqrt{\mathrm{10}}−\mathrm{5}\sqrt{\mathrm{3}} \\ $$
Commented by behi834171 last updated on 06/Oct/25

$${perfect}!\:{thank}\:{you}\:{so}\:{much}\:{dear}\:{master}. \\ $$
Commented by Ghisom_ last updated on 06/Oct/25

$$\mathrm{nice}!\:\mathrm{you}'\mathrm{re}\:\mathrm{a}\:\mathrm{Master}\:\mathrm{of}\:\mathrm{Geometry} \\ $$
Commented by mr W last updated on 06/Oct/25

$${thanks}\:{sirs}! \\ $$