Question Number 224790 by Tawa11 last updated on 04/Oct/25

Commented by Tawa11 last updated on 04/Oct/25

Commented by Tawa11 last updated on 04/Oct/25

$$\mathrm{Am}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 05/Oct/25

$${your}\:{solution}\:{or}\:{other}\:{people}'{s} \\ $$$${solution}? \\ $$
Commented by Tawa11 last updated on 05/Oct/25

$$\mathrm{Someone}\:\mathrm{else} \\ $$
Answered by mr W last updated on 05/Oct/25

Commented by mr W last updated on 05/Oct/25

$$\mathrm{tan}\:\gamma=\frac{\mathrm{0}.\mathrm{75}\sqrt{\mathrm{3}}}{\mathrm{1}.\mathrm{2}+\mathrm{0}.\mathrm{75}}=\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{13}}\: \\ $$$$\Rightarrow\mathrm{sin}\:\gamma=\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{61}}},\:\mathrm{cos}\:\gamma=\frac{\mathrm{13}}{\mathrm{2}\sqrt{\mathrm{61}}} \\ $$$$\Sigma{M}_{\mathrm{0}} =\mathrm{0}: \\ $$$${T}×\mathrm{1}.\mathrm{2}\:\mathrm{sin}\:\gamma={mg}×\frac{\mathrm{0}.\mathrm{75}}{\mathrm{2}} \\ $$$$\Rightarrow{T}=\frac{\mathrm{2}\sqrt{\mathrm{61}}×\mathrm{0}.\mathrm{75}{mg}}{\mathrm{2}×\mathrm{1}.\mathrm{2}×\mathrm{5}\sqrt{\mathrm{3}}}=\frac{\sqrt{\mathrm{183}}\:{mg}}{\mathrm{24}}\approx\mathrm{99}.\mathrm{53}\:{N} \\ $$$$\Sigma{M}_{{B}} =\mathrm{0}: \\ $$$${R}_{{y}} ×\mathrm{1}.\mathrm{2}={mg}\left(\mathrm{1}.\mathrm{2}+\frac{\mathrm{0}.\mathrm{75}}{\mathrm{2}}\right) \\ $$$$\Rightarrow{R}_{{y}} =\frac{\mathrm{21}{mg}}{\mathrm{16}}\approx\mathrm{231}.\mathrm{76}\:{N} \\ $$$$\Sigma{F}_{{x}} =\mathrm{0}: \\ $$$${R}_{{x}} ={T}\:\mathrm{cos}\:\gamma=\frac{\mathrm{13}\sqrt{\mathrm{3}}\:{mg}}{\mathrm{48}}\approx\mathrm{82}.\mathrm{83}\:{N} \\ $$$$\Rightarrow{R}=\sqrt{{R}_{{x}} ^{\mathrm{2}} +{R}_{{y}} ^{\mathrm{2}} }=\frac{\sqrt{\mathrm{1119}}\:{mg}}{\mathrm{24}}\approx\mathrm{246}.\mathrm{12}\:{N} \\ $$
Commented by Tawa11 last updated on 05/Oct/25

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by mr W last updated on 05/Oct/25

Commented by mr W last updated on 05/Oct/25

$$\mathrm{tan}\:\gamma=\frac{\mathrm{0}.\mathrm{75}\sqrt{\mathrm{3}}}{\mathrm{1}.\mathrm{2}+\mathrm{0}.\mathrm{75}}=\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{13}}\: \\ $$$$\Rightarrow\gamma=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{13}}\approx\mathrm{33}.\mathrm{67}° \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{0}.\mathrm{5}×\mathrm{0}.\mathrm{75}}{\left(\mathrm{1}.\mathrm{2}+\mathrm{0}.\mathrm{5}×\mathrm{0}.\mathrm{75}\right)\:\mathrm{tan}\:\gamma}=\frac{\mathrm{13}\sqrt{\mathrm{3}}}{\mathrm{63}} \\ $$$$\Rightarrow\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{13}\sqrt{\mathrm{3}}}{\mathrm{63}}\approx\mathrm{19}.\mathrm{67}° \\ $$$$\beta=\frac{\pi}{\mathrm{2}}−\alpha−\gamma\: \\ $$$$\Rightarrow\mathrm{sin}\:\beta=\mathrm{cos}\:\left(\alpha+\gamma\right) \\ $$$${T}=\frac{{mg}\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\beta}=\frac{{mg}\:\mathrm{sin}\:\alpha}{\mathrm{cos}\:\left(\alpha+\gamma\right)}\approx\mathrm{99}.\mathrm{53}\:{N} \\ $$$${R}=\frac{{mg}\:\mathrm{sin}\:\left(\alpha+\beta\right)}{\mathrm{sin}\:\beta}=\frac{{mg}\:\mathrm{cos}\:\gamma}{\mathrm{cos}\:\left(\alpha+\gamma\right)}\approx\mathrm{246}.\mathrm{12}\:{N} \\ $$
Commented by Tawa11 last updated on 05/Oct/25

$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir} \\ $$
Answered by fantastic last updated on 07/Oct/25

$${T}=\left(\frac{\mathrm{18}×\mathrm{9}.\mathrm{8}×\frac{\mathrm{7}.\mathrm{5}}{\mathrm{2}}}{\mathrm{1}.\mathrm{5sin}\:\left(\mathrm{60}^{\mathrm{0}} −\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{1}.\mathrm{95}}\right)\right.}\right) \\ $$