Question Number 224853 by fantastic last updated on 07/Oct/25

$$ \\ $$$$\mathrm{a}\:\mathrm{piece}\:\mathrm{of}\:\mathrm{chalk}\:\mathrm{rests}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{horizontal}\:\mathrm{board}\:\mathrm{with}\:\mu=\mathrm{0}.\mathrm{1} \\ $$$$\mathrm{Suddenly}\:\mathrm{the}\:\mathrm{board}\:\mathrm{starts}\:\mathrm{to} \\ $$$$\mathrm{move}\:\mathrm{horizontally}\:\mathrm{at}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of} \\ $$$$\mathrm{2m}\:\mathrm{per}\:\mathrm{second}\:\mathrm{and}\:\mathrm{after}\:\mathrm{a} \\ $$$$\mathrm{time}\:\tau\:\mathrm{it}\:\mathrm{stops}\:\mathrm{abruptly}.\:\mathrm{find}\: \\ $$$$\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{drawn} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{chalk}\:\mathrm{on}\:\mathrm{the}\:\mathrm{board}\:\mathrm{for} \\ $$$$\mathrm{folowing}\:\mathrm{cases} \\ $$$$\tau=\mathrm{5}{sec} \\ $$$$\tau=\mathrm{1}{sec} \\ $$$${g}=\mathrm{10}{m}/{s}^{\mathrm{2}} \\ $$
Commented by mr W last updated on 14/Oct/25

$${do}\:{you}\:{have}\:{the}\:{answers}? \\ $$
Commented by fantastic last updated on 14/Oct/25

$${yes} \\ $$
Commented by fantastic last updated on 14/Oct/25

$${i}\:{posted}\:{it}\:{here}\:{because}\:{i}\:{was} \\ $$$${f}\:{acing}\:\:{problem}\:{with}\:{the}\:{voice} \\ $$$${of}\:{the}\:{teacher}.\:{if}\:{you}\:{know}\:{Hindi} \\ $$$${you}\:{will}\:{face}\:{no}\:{problem}.\:{other}\:{wise}\: \\ $$$${you}\:{can}\:{turn}\:{on}\:{subtitel}. \\ $$$${I}\:{can}\:{simply}\:{tell}\:{you}\:{the}\:{solution} \\ $$$${but}\:{I}\:{highly}\:{recommend}\:{you}\:{and} \\ $$$$\:{other}\:{iterested}\:{people}\:{to} \\ $$$${watch}\:{the}\:{video}\:. \\ $$$${the}\:{Q}\:{needs}\:{a}\:{very}\:{high}\:{visualisation}. \\ $$
Commented by fantastic last updated on 14/Oct/25

$$\left.{a}\right)\:\mathrm{2}{m} \\ $$$$\left.{b}\right)\:\mathrm{1}.\mathrm{5}{m} \\ $$
Commented by fantastic last updated on 14/Oct/25
https://youtu.be/sL4vvgR4Alg?si=ujzpEG4Q9LIVsrby
Commented by mr W last updated on 14/Oct/25

$${i}\:{got}\:{the}\:{same}\:{results}.\:{thanks}! \\ $$$${i}\:{try}\:{to}\:{solve}\:{the}\:{questions}\:{in}\:{this} \\ $$$${forum}\:{purely}\:{for}\:{fun}.\:{usually}\:{i}\:{try} \\ $$$${to}\:{solve}\:{them}\:{in}\:{my}\:{own}\:{way}\:{and}\:{am} \\ $$$${not}\:{really}\:{interested}\:{how}\:{other} \\ $$$${people}\:{solve}. \\ $$$${i}'{m}\:{from}\:{Germany}\:{and}\:{don}'{t} \\ $$$${understand}\:{Hindi}\:{either}. \\ $$
Commented by fantastic last updated on 14/Oct/25

$${wow}!\: \\ $$
Commented by fantastic last updated on 14/Oct/25

$${Sir}\:{i}\:{think}\:{you}\:{mingled} \\ $$$${the}\:\mathrm{1}{st}\:{and}\:\mathrm{2}{nd}\:{case} \\ $$
Commented by fantastic last updated on 14/Oct/25

$${only}\:{one}\:{Q}. \\ $$$${why}\:{the}\:{f}_{{kinetic}} \:{will}\:{act}\:{at}\:{the} \\ $$$${same}\:{direction}\:{of}\:{the}\:{boards}\:{velocity}? \\ $$$$ \\ $$
Commented by mr W last updated on 15/Oct/25

$${the}\:{question}\:{asked}\:{two}\:{cases}.\:{it}'{s} \\ $$$${inessential}\:{which}\:{case}\:{is}\:{treated} \\ $$$${as}\:{first}\:{and}\:{which}\:{as}\:{second}. \\ $$$${it}'{s}\:{unfortunate}\:{that}\:{you}\:{pointed}\:{this} \\ $$$${out}\:{as}\:{if}\:{it}\:{were}\:{a}\:{fault}. \\ $$
Commented by mr W last updated on 15/Oct/25

Commented by mr W last updated on 15/Oct/25

$${but}\:{at}\:{the}\:{moment}\:{when}\:{the}\:{board} \\ $$$${stops}\:{abruptly},\:{the}\:{board}\:{rests}\:{while} \\ $$$${the}\:{chalk}\:{continues}\:{to}\:{move}. \\ $$
Commented by mr W last updated on 15/Oct/25

Kinetic friction tries to reduce the relative motion between two objects.
$${at}\:{t}=\mathrm{0},\:{the}\:{board}\:{moves}\:{to}\:{right},\:{say}, \\ $$$${and}\:{the}\:{chalk}\:{remains}\:{in}\:{rest}.\:{the} \\ $$$${direction}\:{of}\:{friction}\:{is}\:{always}\: \\ $$$${opposite}\:{to}\:{the}\:{direction}\:{of}\:{the} \\ $$$${relative}\:{motion}\:{of}\:{the}\:{objects}. \\ $$
$${at}\:{t}=\mathrm{0},\:{the}\:{board}\:{moves}\:{to}\:{right},\:{say}, \\ $$$${and}\:{the}\:{chalk}\:{remains}\:{in}\:{rest}.\:{the} \\ $$$${direction}\:{of}\:{friction}\:{is}\:{always}\: \\ $$$${opposite}\:{to}\:{the}\:{direction}\:{of}\:{the} \\ $$$${relative}\:{motion}\:{of}\:{the}\:{objects}. \\ $$
Commented by mr W last updated on 15/Oct/25

Commented by fantastic last updated on 15/Oct/25

$${thank}\:{you}\:{sir} \\ $$
Answered by mr W last updated on 16/Oct/25

$${at}\:{t}=\mathrm{0}: \\ $$$${both}\:{board}\:{and}\:{chalk}\:{are}\:{in}\:{rest}. \\ $$$${when}\:{the}\:{board}\:{begins}\:{to}\:{move}\:{with} \\ $$$${speed}\:{v}=\mathrm{2}\:{m}/{s}\:{suddently},\:{say}\: \\ $$$${towards}\:{right},\:{the}\:{challk}\:{remains}\: \\ $$$${in}\:{rest},\:{but}\:{obtains}\:{a}\:{kinetic}\:{friction} \\ $$$${force}\:{f}\:{in}\:{the}\:{direction}\:{of}\:{the}\: \\ $$$${movement}\:{of}\:{the}\:{board}.\:{this}\:{friction} \\ $$$${force}\:{brings}\:{the}\:{chalk}\:{to}\:{move}\:{with} \\ $$$${an}\:{acceleration}\:{a}. \\ $$$${ma}={f}=\mu{mg}\: \\ $$$$\Rightarrow{a}=\mu{g}=\mathrm{0}.\mathrm{1}×\mathrm{10}=\mathrm{1}\:{m}/{s}^{\mathrm{2}} \\ $$$${after}\:{time}\:{t},\:{the}\:{distance}\:{the}\:{board} \\ $$$${has}\:{moved}\:{is} \\ $$$${s}_{{B}} ={vt}=\mathrm{2}{t} \\ $$$${and}\:{the}\:{distance}\:{the}\:{chalk}\:{has}\:{moved} \\ $$$${is} \\ $$$${s}_{{C}} =\frac{{at}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{0}.\mathrm{5}{t}^{\mathrm{2}} \\ $$$${as}\:{soon}\:{as}\:{the}\:{chalk}\:{has}\:{the}\:{same} \\ $$$${velocity}\:{as}\:{the}\:{board},\:{there}\:{is}\:{no} \\ $$$${relative}\:{motion}\:{between}\:{them}\:{and} \\ $$$${therefore}\:{no}\:{friction}.\:{upon}\:{now} \\ $$$${both}\:{object}\:{move}\:{with}\:{the}\:{same} \\ $$$${velocity}.\: \\ $$$${at}={v}\:\Rightarrow{t}=\frac{{v}}{{a}}=\frac{\mathrm{2}}{\mathrm{1}}=\mathrm{2}\:{s}. \\ $$$${i}.{e}.\:{after}\:\mathrm{2}\:{s}. \\ $$$${the}\:{length}\:{of}\:{the}\:{line}\:{drawn}\:{by}\:{the} \\ $$$${chalk}\:{on}\:{the}\:{board}\:{is}\:{the}\:{relative} \\ $$$${displacement}\:{between}\:{both}\:{objects}: \\ $$$${d}={s}_{{B}} −{s}_{{C}} =\mathrm{2}{t}−\mathrm{0}.\mathrm{5}{t}^{\mathrm{2}} \\ $$
Commented by mr W last updated on 13/Oct/25

Commented by mr W last updated on 13/Oct/25

$${the}\:{trace}\:{of}\:{the}\:{chalk}\:{on}\:{the}\:{board}: \\ $$
Commented by mr W last updated on 14/Oct/25

$${case}\:\mathrm{1}:\: \\ $$$${the}\:{board}\:{stops}\:{abruptly}\:{after}\:\mathrm{1}\:{s}. \\ $$$${at}\:{t}=\mathrm{1}\:{s}:\: \\ $$$${distance}\:{moved}\:{by}\:{the}\:{board}\:{is}\: \\ $$$${s}_{{B}} =\mathrm{2}×\mathrm{1}=\mathrm{2}\:{m} \\ $$$${distance}\:{moved}\:{by}\:{the}\:{chalk}\:{is}\: \\ $$$${s}_{{C}} =\mathrm{0}.\mathrm{5}×\mathrm{1}^{\mathrm{2}} =\mathrm{0}.\mathrm{5}\:{m} \\ $$$${at}\:{this}\:{moment}\:{the}\:{velocity}\:{of}\:{the} \\ $$$${chalk}\:{is}\:\mathrm{1}×\mathrm{1}=\mathrm{1}\:{m}/{s}. \\ $$$${after}\:{this}\:{moment}\:{the}\:{board}\:{is} \\ $$$${kept}\:{in}\:{rest},\:{but}\:{the}\:{chalk}\:{remains} \\ $$$${in}\:{motion}.\:{but}\:{the}\:{friction}\:{is}\:{now}\:{in} \\ $$$${opposite}\:{direction}.\:{that}\:{means}\:{the} \\ $$$${acceleration}\:{is}\:{also}\:{in}\:{opposite}\: \\ $$$${direction}: \\ $$$${a}=−\mu{g}=−\mathrm{1}\:{m}/{s}^{\mathrm{2}} \\ $$$${after}\:\mathrm{1}\:{s}\:{the}\:{chalk}\:{also}\:{stops}.\:{during} \\ $$$${this}\:{time}\:{the}\:{chalk}\:{moves}\:{further} \\ $$$$\mathrm{0}.\mathrm{5}\:{m}. \\ $$$${the}\:{maximal}\:{relative}\:{displacement} \\ $$$${and}\:{therefore}\:{the}\:{length}\:{of}\:{the} \\ $$$${line}\:{drawn}\:{by}\:{the}\:{chalk}\:{is}\:{at}\:{t}=\mathrm{1}\:{s}: \\ $$$${s}_{{B}} −{s}_{{C}} =\mathrm{2}−\mathrm{0}.\mathrm{5}=\mathrm{1}.\mathrm{5}\:{m}. \\ $$
Commented by mr W last updated on 14/Oct/25

Commented by mr W last updated on 13/Oct/25

Commented by mr W last updated on 13/Oct/25

$${the}\:{trace}\:{of}\:{the}\:{chalk}\:{on}\:{the}\:{board}: \\ $$
Commented by mr W last updated on 14/Oct/25

$${case}\:\mathrm{2}:\: \\ $$$${the}\:{board}\:{stops}\:{abruptly}\:{after}\:\mathrm{5}\:{s}. \\ $$$${at}\:{t}=\mathrm{2}\:{s}:\: \\ $$$${velocity}\:{of}\:{chalk}\:{is}\:\mathrm{1}×\mathrm{2}=\mathrm{2}\:{m}/{s}. \\ $$$${distance}\:{moved}\:{by}\:{board}\:{is}\:\mathrm{2}×\mathrm{2}=\mathrm{4}\:{m}. \\ $$$${distance}\:{moved}\:{by}\:{chalk}\:{is}\:\mathrm{0}.\mathrm{5}×\mathrm{1}×\mathrm{2}^{\mathrm{2}} =\mathrm{2}\:{m}. \\ $$$${the}\:{relative}\:{displacement}\:{is}\:\mathrm{4}−\mathrm{2}=\mathrm{2}\:{m}. \\ $$$${after}\:{this}\:{moment}\:{the}\:{chalk}\:{moves} \\ $$$${with}\:{the}\:{same}\:{speed}\:{as}\:{the}\:{board},\:{so} \\ $$$${the}\:{friction}\:{force}\:{and}\:{therefore}\: \\ $$$${also}\:{its}\:{acceleration}\:{is}\:{zero}. \\ $$$${at}\:{t}=\mathrm{5}\:{s}: \\ $$$${the}\:{board}\:{stops}\:{abruptly}. \\ $$$${after}\:{this}\:{moment}\:{the}\:{board}\:{is} \\ $$$${kept}\:{in}\:{rest},\:{but}\:{the}\:{chalk}\:{remains} \\ $$$${in}\:{motion}\:{and}\:{with}\:{an}\:{acceleration} \\ $$$${in}\:{opposite}\:{direction} \\ $$$${a}=−\mu{g}=−\mathrm{1}\:{m}/{s}^{\mathrm{2}} . \\ $$$${after}\:\mathrm{2}\:{s}\:{also}\:{the}\:{chalk}\:{stops}.\:{during} \\ $$$${this}\:{time}\:{the}\:{distance}\:{moved}\:{by}\:{the} \\ $$$${chalk}\:{is}\:\mathrm{2}×\mathrm{2}−\mathrm{0}.\mathrm{5}×\mathrm{1}×\mathrm{2}^{\mathrm{2}} =\mathrm{2}\:{m}. \\ $$$$ \\ $$$${the}\:{length}\:{of}\:{the}\:{line}\:{drawn}\:{by}\:{the} \\ $$$${chalk}\:{is}\:{the}\:{maximal}\:{relative} \\ $$$${displacement}\:{at}\:{t}=\mathrm{2}\:{till}\:\mathrm{5}\:{s}: \\ $$$${s}_{{B}} −{s}_{{C}} =\mathrm{4}−\mathrm{2}=\mathrm{2}\:{m}. \\ $$
Commented by mr W last updated on 14/Oct/25

Commented by mr W last updated on 14/Oct/25

Commented by ajfour last updated on 16/Oct/25
https://youtu.be/G_goL8NB2JQ?si=3Ybz8e5654HFqO4I