Menu Close

Question-224873




Question Number 224873 by ajfour last updated on 08/Oct/25
Commented by ajfour last updated on 08/Oct/25
If  x^2 +bx=−c
$${If}\:\:{x}^{\mathrm{2}} +{bx}=−{c} \\ $$
Commented by ajfour last updated on 08/Oct/25
Commented by ajfour last updated on 08/Oct/25
because  scos θ−ssin θ=b  s^2 sin θcos θ=−c  s^2 (1−2sin θcos θ)=b^2   s^2 (1+((2c)/s^2 ))=b^2   s^2 =b^2 −2c  say sin θ=q  q^2 (1−q^2 )=(c^2 /s^4 )  q^4 −q^2 +(c^2 /s^4 )=0  q^2 =(1/2)±(√((1/4)−(c^2 /s^4 )))  x^2 =s^2 sin^2 θ  x^2 =(b^2 −2c){(1/2)±(√((1/4)−((c/(b^2 −2c)))^2 ))}
$${because} \\ $$$${s}\mathrm{cos}\:\theta−{s}\mathrm{sin}\:\theta={b} \\ $$$${s}^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta=−{c} \\ $$$${s}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{2sin}\:\theta\mathrm{cos}\:\theta\right)={b}^{\mathrm{2}} \\ $$$${s}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{2}{c}}{{s}^{\mathrm{2}} }\right)={b}^{\mathrm{2}} \\ $$$${s}^{\mathrm{2}} ={b}^{\mathrm{2}} −\mathrm{2}{c} \\ $$$${say}\:\mathrm{sin}\:\theta={q} \\ $$$${q}^{\mathrm{2}} \left(\mathrm{1}−{q}^{\mathrm{2}} \right)=\frac{{c}^{\mathrm{2}} }{{s}^{\mathrm{4}} } \\ $$$${q}^{\mathrm{4}} −{q}^{\mathrm{2}} +\frac{{c}^{\mathrm{2}} }{{s}^{\mathrm{4}} }=\mathrm{0} \\ $$$${q}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\pm\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\frac{{c}^{\mathrm{2}} }{{s}^{\mathrm{4}} }} \\ $$$${x}^{\mathrm{2}} ={s}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta \\ $$$${x}^{\mathrm{2}} =\left({b}^{\mathrm{2}} −\mathrm{2}{c}\right)\left\{\frac{\mathrm{1}}{\mathrm{2}}\pm\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\left(\frac{{c}}{{b}^{\mathrm{2}} −\mathrm{2}{c}}\right)^{\mathrm{2}} }\right\} \\ $$$$ \\ $$
Commented by fantastic last updated on 08/Oct/25
Q224859. sir can you please help me
$${Q}\mathrm{224859}.\:{sir}\:{can}\:{you}\:{please}\:{help}\:{me} \\ $$
Commented by ajfour last updated on 09/Oct/25
https://youtu.be/F6bd8sNM-3c?si=Zv8zgNANG0uy6WHE
Commented by mr W last updated on 13/Oct/25
please give a try to  Q224853
$${please}\:{give}\:{a}\:{try}\:{to}\:\:{Q}\mathrm{224853} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *