Menu Close

T-x-y-R-2-R-T-x-y-x-a-2-y-b-2-K-x-y-4-a-2-b-2-1-4x-2-a-4-4y-2-b-4-2-S-dr-2-K-S-sheprical-coordinate-and-associate-with-Euler-characteristic-T-




Question Number 224919 by fkwow344 last updated on 12/Oct/25
T(x,y);R^2 →R ,  T(x,y)=((x/a))^2 +((y/b))^2   K(x,y)=(4/(a^2 b^2 (1+((4x^2 )/a^4 )+((4y^2 )/b^4 ))^2 ))  ∫_( S) dr^2 K=?  S; sheprical coordinate       and associate with Euler characteristic χ(T)
$${T}\left({x},{y}\right);\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}\:,\:\:{T}\left({x},{y}\right)=\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} +\left(\frac{{y}}{{b}}\right)^{\mathrm{2}} \\ $$$${K}\left({x},{y}\right)=\frac{\mathrm{4}}{{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{4}{x}^{\mathrm{2}} }{{a}^{\mathrm{4}} }+\frac{\mathrm{4}{y}^{\mathrm{2}} }{{b}^{\mathrm{4}} }\right)^{\mathrm{2}} } \\ $$$$\int_{\:\mathcal{S}} \mathrm{d}\boldsymbol{\mathrm{r}}^{\mathrm{2}} {K}=? \\ $$$$\mathcal{S};\:\mathrm{sheprical}\:\mathrm{coordinate} \\ $$$$\:\: \\ $$$$\:\mathrm{and}\:\mathrm{associate}\:\mathrm{with}\:\mathrm{Euler}\:\mathrm{characteristic}\:\chi\left({T}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *