Menu Close

Domain-f-x-log-e-x-2-6x-6-




Question Number 224922 by fantastic last updated on 12/Oct/25
Domain  f(x)=(√(log _e (x^2 −6x+6)))
$${Domain} \\ $$$${f}\left({x}\right)=\sqrt{\mathrm{log}\:_{{e}} \left({x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{6}\right)} \\ $$
Answered by Raphael254 last updated on 12/Oct/25
  log_e (x^2 −6x+6) ≥ 0 and x^2  − 6x + 6 > 0    x = ((6 ± (√(36 − 24)))/2) = ((6 ± 2(√3))/2)    x_1  = 3 + (√3)  x_2  = 3 − (√3)    x^2  − 6x + 6 > 0 ⇒ x < 3 − (√3) or x > 3 + (√3)    log_e  (x^2  − 6x + 6)≥ 0 ⇒ x^2  − 6x + 6 ≥ 1    x^2  − 6x + 5 ≥ 0    x = ((6 ± (√(36 − 20)))/2) = ((6 ± 4)/2)    x_1  = 5  x_2  = 1    x^2  − 6x + 6 ≥ 1 ⇒ x ≤ 1 or x ≥ 5    (x ≤ 1 or x ≥ 5) and (x < 3 − (√3) or x > 3 + (√3))    1 < 3 − (√3) and 5 > 3 + (√3)    D(f) = (−∞, 1] ∪ [5, ∞)
$$ \\ $$$${log}_{{e}} \left({x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{6}\right)\:\geqslant\:\mathrm{0}\:{and}\:{x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:\mathrm{6}\:>\:\mathrm{0} \\ $$$$ \\ $$$${x}\:=\:\frac{\mathrm{6}\:\pm\:\sqrt{\mathrm{36}\:−\:\mathrm{24}}}{\mathrm{2}}\:=\:\frac{\mathrm{6}\:\pm\:\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$ \\ $$$${x}_{\mathrm{1}} \:=\:\mathrm{3}\:+\:\sqrt{\mathrm{3}} \\ $$$${x}_{\mathrm{2}} \:=\:\mathrm{3}\:−\:\sqrt{\mathrm{3}} \\ $$$$ \\ $$$${x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:\mathrm{6}\:>\:\mathrm{0}\:\Rightarrow\:{x}\:<\:\mathrm{3}\:−\:\sqrt{\mathrm{3}}\:{or}\:{x}\:>\:\mathrm{3}\:+\:\sqrt{\mathrm{3}} \\ $$$$ \\ $$$${log}_{{e}} \:\left({x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:\mathrm{6}\right)\geqslant\:\mathrm{0}\:\Rightarrow\:{x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:\mathrm{6}\:\geqslant\:\mathrm{1} \\ $$$$ \\ $$$${x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:\mathrm{5}\:\geqslant\:\mathrm{0} \\ $$$$ \\ $$$${x}\:=\:\frac{\mathrm{6}\:\pm\:\sqrt{\mathrm{36}\:−\:\mathrm{20}}}{\mathrm{2}}\:=\:\frac{\mathrm{6}\:\pm\:\mathrm{4}}{\mathrm{2}} \\ $$$$ \\ $$$${x}_{\mathrm{1}} \:=\:\mathrm{5} \\ $$$${x}_{\mathrm{2}} \:=\:\mathrm{1} \\ $$$$ \\ $$$${x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:\mathrm{6}\:\geqslant\:\mathrm{1}\:\Rightarrow\:{x}\:\leqslant\:\mathrm{1}\:{or}\:{x}\:\geqslant\:\mathrm{5} \\ $$$$ \\ $$$$\left({x}\:\leqslant\:\mathrm{1}\:{or}\:{x}\:\geqslant\:\mathrm{5}\right)\:{and}\:\left({x}\:<\:\mathrm{3}\:−\:\sqrt{\mathrm{3}}\:{or}\:{x}\:>\:\mathrm{3}\:+\:\sqrt{\mathrm{3}}\right) \\ $$$$ \\ $$$$\mathrm{1}\:<\:\mathrm{3}\:−\:\sqrt{\mathrm{3}}\:{and}\:\mathrm{5}\:>\:\mathrm{3}\:+\:\sqrt{\mathrm{3}} \\ $$$$ \\ $$$${D}\left({f}\right)\:=\:\left(−\infty,\:\mathrm{1}\right]\:\cup\:\left[\mathrm{5},\:\infty\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *