Menu Close

cos-pi-7-cos-2pi-7-cos-3pi-7-Help-me-please-




Question Number 224966 by Ismoiljon_008 last updated on 14/Oct/25
     cos(π/7) − cos((2π)/7) + cos((3π)/7) = ?     Help me please
$$ \\ $$$$\:\:\:{cos}\frac{\pi}{\mathrm{7}}\:−\:{cos}\frac{\mathrm{2}\pi}{\mathrm{7}}\:+\:{cos}\frac{\mathrm{3}\pi}{\mathrm{7}}\:=\:? \\ $$$$\:\:\:{Help}\:{me}\:{please} \\ $$$$ \\ $$
Commented by fantastic last updated on 14/Oct/25
0.5
$$\mathrm{0}.\mathrm{5} \\ $$
Commented by Ismoiljon_008 last updated on 14/Oct/25
 how?
$$\:{how}? \\ $$
Answered by Frix last updated on 14/Oct/25
cos (π/7) −cos ((2π)/7) +cos ((3π)/7) =x  (cos (π/7) −cos ((2π)/7) +cos ((3π)/7))^2 =x^2   expand and use formulas  cos^2  α =(1/2)(1+cos 2α)  cos α cos β =(1/2)(cos (α−β) +cos (α+β))  to get  (3/2)−(5/2)cos (π/7) +(5/2)cos ((2π)/7) −(5/2)cos ((3π)/7) =x^2   cos (π/7) −cos ((2π)/7) +cos ((3π)/7) =((3−2x^2 )/5)  x=((3−2x^2 )/5)  x^2 +((5x)/2)−(3/2)=0  x=−3 [rejected]  x=(1/2)
$$\mathrm{cos}\:\frac{\pi}{\mathrm{7}}\:−\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{7}}\:+\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{7}}\:={x} \\ $$$$\left(\mathrm{cos}\:\frac{\pi}{\mathrm{7}}\:−\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{7}}\:+\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{7}}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} \\ $$$$\mathrm{expand}\:\mathrm{and}\:\mathrm{use}\:\mathrm{formulas} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\alpha\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\alpha\right) \\ $$$$\mathrm{cos}\:\alpha\:\mathrm{cos}\:\beta\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:\left(\alpha−\beta\right)\:+\mathrm{cos}\:\left(\alpha+\beta\right)\right) \\ $$$$\mathrm{to}\:\mathrm{get} \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{5}}{\mathrm{2}}\mathrm{cos}\:\frac{\pi}{\mathrm{7}}\:+\frac{\mathrm{5}}{\mathrm{2}}\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{7}}\:−\frac{\mathrm{5}}{\mathrm{2}}\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{7}}\:={x}^{\mathrm{2}} \\ $$$$\mathrm{cos}\:\frac{\pi}{\mathrm{7}}\:−\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{7}}\:+\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{7}}\:=\frac{\mathrm{3}−\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{5}} \\ $$$${x}=\frac{\mathrm{3}−\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{5}} \\ $$$${x}^{\mathrm{2}} +\frac{\mathrm{5}{x}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{2}}=\mathrm{0} \\ $$$${x}=−\mathrm{3}\:\left[\mathrm{rejected}\right] \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Ismoiljon_008 last updated on 15/Oct/25
   thank you
$$\:\:\:{thank}\:{you} \\ $$$$ \\ $$
Answered by som(math1967) last updated on 14/Oct/25
let (π/7)=x⇒π−4x=3x   cosx−cos2x+cos3x  =(1/(2sinx))(2sinxcosx−2sinxcos2x                           +2sinxcos3x)  =(1/(2sinx))(sin2x−sin3x+sinx+sin4x−sin2x)  =(1/(2sinx))×{sinx−sin3x+sin(π−3x)}  =(1/(2sinx))(sinx−sin3x+sin3x)  =(1/(2sinx))×sinx=(1/2)
$${let}\:\frac{\pi}{\mathrm{7}}={x}\Rightarrow\pi−\mathrm{4}{x}=\mathrm{3}{x} \\ $$$$\:{cosx}−{cos}\mathrm{2}{x}+{cos}\mathrm{3}{x} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{sinx}}\left(\mathrm{2}{sinxcosx}−\mathrm{2}{sinxcos}\mathrm{2}{x}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{2}{sinxcos}\mathrm{3}{x}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{sinx}}\left(\cancel{{sin}\mathrm{2}{x}}−{sin}\mathrm{3}{x}+{sinx}+{sin}\mathrm{4}{x}−\cancel{{sin}\mathrm{2}{x}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{sinx}}×\left\{{sinx}−{sin}\mathrm{3}{x}+{sin}\left(\pi−\mathrm{3}{x}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{sinx}}\left({sinx}−{sin}\mathrm{3}{x}+{sin}\mathrm{3}{x}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{sinx}}×{sinx}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$
Commented by Frix last updated on 14/Oct/25
Nice!
$$\mathrm{Nice}! \\ $$
Commented by Ismoiljon_008 last updated on 15/Oct/25
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *