Question Number 225020 by Abdulazim last updated on 15/Oct/25

$$\:\:\:{tgx}+{tgy}+{tgz}={A} \\ $$$$\:\:\:{tg}^{\mathrm{3}} {x}+{tg}^{\mathrm{3}} {y}+{tg}^{\mathrm{3}} {z}=? \\ $$
Commented by mr W last updated on 16/Oct/25

$${you}\:{can}\:{not}\:{uniquely}\:{determine}\:{p}_{\mathrm{3}} , \\ $$$${if}\:{only}\:{p}_{\mathrm{1}} \:{is}\:{given}. \\ $$$${with}\:{p}_{{n}} ={a}^{{n}} +{b}^{{n}} +{c}^{{n}} \:{and} \\ $$$${a}=\mathrm{tan}\:{x},\:{b}=\mathrm{tan}\:{y},\:{c}=\mathrm{tan}\:{z} \\ $$
Answered by fkwow344 last updated on 16/Oct/25

$${g}^{\mathrm{2}} {A}…… \\ $$$$\mathrm{and}\:\mathrm{let}'\mathrm{s}\:\mathrm{introduce}\:\mathrm{Zero}\:\mathrm{divisor}\:\mathrm{in}\:\mathrm{math}. \\ $$$$\mathrm{and}\:\mathrm{Let}\:\mathcal{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{Ring}\: \\ $$$$\mathrm{An}\:\mathrm{element}\:{a}\in\mathcal{R}\:\mathrm{is}\:\mathrm{called}\:\mathrm{a}\:\mathrm{zero}\:\mathrm{divisor}\: \\ $$$$\mathrm{if}\:{a}\neq\mathrm{0}\:\mathrm{and}\:\mathrm{there}\:\mathrm{exist}\:{b}\neq\mathrm{0}\:\mathrm{such}\:\mathrm{that}\:{ab}=\mathrm{0} \\ $$$$\mathrm{isn}'\mathrm{t}\:\mathrm{it}\:\mathrm{fun}??\:\::\rangle \\ $$$$\mathrm{for}\:\mathrm{example}\:\mathbb{Z}\backslash\left\{\mathrm{0}\right\}\:\mathrm{is}\:\mathrm{Ring}\:\mathrm{But}\:\mathbb{Z}\backslash\left\{\mathrm{0}\right\}\:\mathrm{isn}'\mathrm{t}\:\mathrm{Zero}\:\mathrm{divisor} \\ $$$$\mathrm{or}\:\mathrm{matrix}\:{A}\in\mathrm{Mat}_{{n}} \left({M}\right)\:\: \\ $$$${A}=\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}\end{pmatrix}\:,\:{B}=\begin{pmatrix}{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}\end{pmatrix}\:\:,\:{AB}=\mathrm{0} \\ $$$$\:\:\: \\ $$
Commented by Tinku Tara last updated on 16/Oct/25

$$\mathrm{Is}\:\mathrm{this}\:\mathrm{answer}\:\mathrm{relevant}\:\mathrm{to}\:\mathrm{the}\:\mathrm{question}? \\ $$
Commented by fkwow344 last updated on 16/Oct/25

$$\mathrm{me}…???\:\mathrm{ummm}…. \\ $$$$\mathrm{And}\:\mathrm{if}\:\mathrm{you}'\mathrm{re}\:\mathrm{talking}\:\mathrm{to}\:\mathrm{me}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:''\mathrm{yes}'' \\ $$$$\mathrm{Because}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{just}\:\mathrm{going}\:\mathrm{to}\:\mathrm{be}\:\mathrm{about}\:\mathrm{multiplication} \\ $$$$\mathrm{its}\:\mathrm{going}\:\mathrm{to}\:\mathrm{be}\:\mathrm{about}\:\mathrm{providing}\:\mathrm{a}\:\mathrm{wider}\:\mathrm{field}\:\mathrm{of}\:\mathrm{view} \\ $$$$\mathrm{So}\:\mathrm{my}\:\mathrm{intention}\:\mathrm{was}\:\mathrm{that}\:\mathrm{by}\:\mathrm{introducing}\:\mathrm{to} \\ $$$$\mathrm{Zero}\:\mathrm{division}\:\mathrm{which}\:\mathrm{is}\:\mathrm{about}\:\mathrm{modern}\:\mathrm{algebra} \\ $$$$\mathrm{i}\:\mathrm{can}\:\mathrm{provide}\:\mathrm{better}\:\mathrm{motivation}\:\mathrm{for}\:\mathrm{math}. \\ $$$$\mathrm{i}\:\mathrm{really}\:\mathrm{love}\:\mathrm{Math}\: \\ $$
Commented by fantastic last updated on 16/Oct/25

$${for}\:{how}\:{many}\:{years}\:{you}\:{are} \\ $$$${dating}\:{math}\:{or}\:{you}\:{have}\:{already} \\ $$$${married}\:{math}? \\ $$
Commented by fantastic last updated on 16/Oct/25

$${sir}\:{if}\:{i}\:{accidently}\:{uninstall} \\ $$$${this}\:{app}\:{and}\:{then}\:{if}\:{i}\:{reinstall} \\ $$$${the}\:{app}\:{do}\:{i}\:{have}\:{to}\:{make}\:{a}\:{new} \\ $$$${account}?\:{or}\:{i}\:{can}\:{enter}\:{the}\:{user} \\ $$$${name}\:{and}\:{password}\:{to} \\ $$$${log}\:{in}\:{my}\:{account}?? \\ $$
Commented by Tinku Tara last updated on 16/Oct/25
You can remember your password than you can login. For equation in your personal work you can export to SD card and reimport. Anything that you did not post to forum is not connected to your login id snd must be backed using google backup or in app mechanism to save to sd card