Menu Close

Question-225262




Question Number 225262 by fantastic last updated on 19/Oct/25
Commented by fantastic last updated on 19/Oct/25
F is midpoint of AB  AG=GH=3  HB=2  Area of smaller circle?
$${F}\:{is}\:{midpoint}\:{of}\:{AB} \\ $$$${AG}={GH}=\mathrm{3} \\ $$$${HB}=\mathrm{2} \\ $$$${Area}\:{of}\:{smaller}\:{circle}? \\ $$
Commented by ajfour last updated on 20/Oct/25
So CD is diameter, i did fail to notice before. How's this video. Criticise somewhat, wanna better future ones. https://youtu.be/kNE2MWk-PlQ?si=cu3VdCj4sZwFZiiY
Commented by fantastic last updated on 20/Oct/25
sir if the CD length i  think it will not pass  G and H
$${sir}\:{if}\:{the}\:{CD}\:{length}\:{i} \\ $$$${think}\:{it}\:{will}\:{not}\:{pass} \\ $$$${G}\:{and}\:{H} \\ $$
Commented by fantastic last updated on 20/Oct/25
Answered by mr W last updated on 20/Oct/25
Commented by mr W last updated on 20/Oct/25
i didn′t say  that it is the only path.  certainly there are other methods.  e.g. we can also get  p^2 −0.5^2 =r^2 −1.5^2   ⇒4^2 −r^2 −0.5^2 =r^2 −1.5^2  ⇒r^2 =9
$${i}\:{didn}'{t}\:{say}\:\:{that}\:{it}\:{is}\:{the}\:{only}\:{path}. \\ $$$${certainly}\:{there}\:{are}\:{other}\:{methods}. \\ $$$${e}.{g}.\:{we}\:{can}\:{also}\:{get} \\ $$$${p}^{\mathrm{2}} −\mathrm{0}.\mathrm{5}^{\mathrm{2}} ={r}^{\mathrm{2}} −\mathrm{1}.\mathrm{5}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}^{\mathrm{2}} −{r}^{\mathrm{2}} −\mathrm{0}.\mathrm{5}^{\mathrm{2}} ={r}^{\mathrm{2}} −\mathrm{1}.\mathrm{5}^{\mathrm{2}} \:\Rightarrow{r}^{\mathrm{2}} =\mathrm{9} \\ $$
Commented by fantastic last updated on 20/Oct/25
thanks sir.
$${thanks}\:{sir}. \\ $$
Commented by fantastic last updated on 20/Oct/25
this can be solved by  only usimg Pythagoras  Theorem
$${this}\:{can}\:{be}\:{solved}\:{by} \\ $$$${only}\:{usimg}\:{Pythagoras} \\ $$$${Theorem} \\ $$
Commented by mr W last updated on 20/Oct/25
p^2 =4^2 −r^2   cos ∠GFE=((1^2 +p^2 −r^2 )/(2×1×p))=−((2^2 +p^2 −r^2 )/(2×2×p))  2+p^2 −r^2 =0  2+4^2 −r^2 −r^2 =0  ⇒r^2 =9 ⇒r=3  area of small circle =πr^2 =9π ✓
$${p}^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} −{r}^{\mathrm{2}} \\ $$$$\mathrm{cos}\:\angle{GFE}=\frac{\mathrm{1}^{\mathrm{2}} +{p}^{\mathrm{2}} −{r}^{\mathrm{2}} }{\mathrm{2}×\mathrm{1}×{p}}=−\frac{\mathrm{2}^{\mathrm{2}} +{p}^{\mathrm{2}} −{r}^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}×{p}} \\ $$$$\mathrm{2}+{p}^{\mathrm{2}} −{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{2}+\mathrm{4}^{\mathrm{2}} −{r}^{\mathrm{2}} −{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{r}^{\mathrm{2}} =\mathrm{9}\:\Rightarrow{r}=\mathrm{3} \\ $$$${area}\:{of}\:{small}\:{circle}\:=\pi{r}^{\mathrm{2}} =\mathrm{9}\pi\:\checkmark \\ $$
Commented by fantastic last updated on 20/Oct/25
yeah!  thank you!
$${yeah}! \\ $$$${thank}\:{you}! \\ $$
Commented by fantastic last updated on 20/Oct/25
Commented by sben last updated on 20/Oct/25
But AG = 3 not 2 (See the question)
Commented by fantastic last updated on 20/Oct/25
you are right
$${you}\:{are}\:{right} \\ $$
Commented by fantastic last updated on 20/Oct/25
Sir in the picture you wrote  AG=2  but actually it is 3
$${Sir}\:{in}\:{the}\:{picture}\:{you}\:{wrote} \\ $$$${AG}=\mathrm{2} \\ $$$${but}\:{actually}\:{it}\:{is}\:\mathrm{3} \\ $$
Commented by ajfour last updated on 20/Oct/25
yeah, we know, sometimes, it happens.��

Leave a Reply

Your email address will not be published. Required fields are marked *