Question Number 225282 by fantastic last updated on 20/Oct/25

$${Q}\mathrm{225146} \\ $$$${here}\:{if}\:{the}\:{wedge}\:{and}\:{the} \\ $$$${ground}\:\:{had}\:{no}\:{friction} \\ $$$${it}\:{would}\:{start}\:{going}\:\rightarrow \\ $$$${what}\:{is}\:{acc}.\:{at}\:{time}\:{t}? \\ $$$$\mu={kx} \\ $$
Commented by mr W last updated on 20/Oct/25

$${nice}\:{question}! \\ $$$${in}\:{this}\:{case}\:{we}\:{need}\:{to}\:{know}\:{the} \\ $$$${masses}\:{from}\:{block}\:{and}\:{wedge}. \\ $$
Commented by fantastic last updated on 20/Oct/25

$${Take}\:{m}\:{and}\:{M} \\ $$
Commented by fantastic last updated on 20/Oct/25

$${Also}\:{find}\:{the}\:{acc}.{of}\:{the}\:{block} \\ $$
Commented by fantastic last updated on 21/Oct/25

$$ \\ $$$${pseudo}\:{force}={mA} \\ $$$${a}=\left({mg}\mathrm{sin}\:\alpha+{mA}\mathrm{cos}\:\alpha−\mu{n}\right)/{m} \\ $$$${n}+{mA}\mathrm{sin}\:\alpha={mg}\mathrm{cos}\:\alpha \\ $$$$\Rightarrow{n}={mg}\mathrm{cos}\:\alpha−{mA}\mathrm{sin}\:\alpha \\ $$$$\mu=\xi{x} \\ $$$${a}=\left({g}\mathrm{sin}\:\alpha+{A}\mathrm{cos}\:\alpha−\xi{xg}\mathrm{cos}\:\alpha+\xi{xA}\mathrm{sin}\:\alpha\right) \\ $$$$\frac{{dv}}{{dt}}=\left({g}\mathrm{sin}\:\alpha+{A}\mathrm{cos}\:\alpha−\xi{xg}\mathrm{cos}\:\alpha+\xi{xA}\mathrm{sin}\:\alpha\right) \\ $$$${dv}={g}\mathrm{sin}\:\alpha{dt}+{A}\mathrm{cos}\:\alpha{dt}−\xi{xg}\mathrm{cos}\:\alpha{dt}+\xi{xA}\mathrm{sin}\:\alpha{dt} \\ $$$$\int_{\mathrm{0}} ^{{v}} {dv}=\int_{\mathrm{0}} ^{{t}} \:{g}\mathrm{sin}\:\alpha{dt}+\int_{\mathrm{0}} ^{{t}} {A}\mathrm{cos}\:\alpha{dt}−\int_{\mathrm{0}} ^{{t}} \xi{xg}\mathrm{cos}\:\alpha{dt}+\int_{\mathrm{0}} ^{{t}} \xi{xA}\mathrm{sin}\:\alpha{dt} \\ $$$$\frac{{dx}}{{dt}}={mg}\mathrm{sin}\:\alpha{t}+{mA}\mathrm{cos}\:\alpha{t}−\xi{xmg}\mathrm{cos}\:\alpha{t}+\xi{xmA}\mathrm{sin}\:\alpha{t} \\ $$$$\int_{\mathrm{0}} ^{{x}} {dx}=\int_{\mathrm{0}} ^{{t}} {g}\mathrm{sin}\:\alpha{tdt}+\int_{\mathrm{0}} ^{{t}} {A}\mathrm{cos}\:\alpha{tdt}−\int_{\mathrm{0}} ^{{t}} \xi{xg}\mathrm{cos}\:\alpha{tdt}+\int_{\mathrm{0}} ^{{t}} \xi{xA}\mathrm{sin}\:\alpha{tdt} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \mathrm{sin}\:\alpha+\frac{\mathrm{1}}{\mathrm{2}}{At}^{\mathrm{2}} \mathrm{cos}\:\alpha−\frac{\mathrm{1}}{\mathrm{2}}\xi{gxt}^{\mathrm{2}} \mathrm{cos}\:\alpha+\frac{\mathrm{1}}{\mathrm{2}}\xi{Axt}^{\mathrm{2}} \mathrm{sin}\:\alpha \\ $$$${x}\left(\mathrm{2}+\xi{gt}^{\mathrm{2}} \mathrm{cos}\:\alpha−\xi{At}^{\mathrm{2}} \mathrm{sin}\:\alpha\right)={t}^{\mathrm{2}} \left({g}\mathrm{sin}\:\alpha+{A}\mathrm{cos}\:\alpha\right) \\ $$$$\therefore{x}=\frac{{t}^{\mathrm{2}} \left({g}\mathrm{sin}\:\alpha+{A}\mathrm{cos}\:\alpha\right)}{\left(\mathrm{2}+\xi{t}^{\mathrm{2}} \left({g}\mathrm{cos}\:\alpha−{A}\mathrm{sin}\:\alpha\right)\right.}\:=\: \\ $$$${So}\:{at}\:{time}\:{t}\:\mu=\xi{x}=\xi\: \\ $$$${f}=\mu{n}=\xi\:{m}\left({g}\mathrm{cos}\:\alpha−{A}\mathrm{sin}\:\alpha\right) \\ $$$${mg}\mathrm{sin}\:\alpha+{mA}\mathrm{cos}\:\alpha−\xi\:{m}\left({g}\mathrm{cos}\:\alpha−{A}\mathrm{sin}\:\alpha\right)={ma} \\ $$$${a}={g}\mathrm{sin}\:\alpha+{A}\mathrm{cos}\:\alpha−\xi\:\left({g}\mathrm{cos}\:\alpha−{A}\mathrm{sin}\:\alpha\right)…..\left({i}\right) \\ $$$${now}\:{if}\:{we}\:{draw}\:{the}\:{FBD}\:{of}\:{the}\:{wedge}\: \\ $$$${normal}\:{force}\:{will}\:{act}\:{on}\:{its}\:{surface}\:{perpendicularly} \\ $$$${one}\:{component}\:{will}\:{be}\:{horizontal}\:{n}\mathrm{cos}\:\alpha \\ $$$${one}\:{will}\:{be}\:{perpendicular}\:{n}\mathrm{sin}\:\alpha \\ $$$${so} \\ $$$${n}\mathrm{cos}\:\alpha={MA} \\ $$$$\Rightarrow{mg}\mathrm{cos}^{\mathrm{2}} \:\alpha−{mA}\mathrm{sin}\:\alpha\mathrm{cos}\:\alpha={MA} \\ $$$$\Rightarrow{mg}\mathrm{cos}\:^{\mathrm{2}} \alpha={A}\left({M}+{m}\mathrm{sin}\:\alpha\mathrm{cos}\:\:\alpha\right) \\ $$$$\begin{array}{|c|}{\therefore{A}=\frac{{mg}\mathrm{cos}\:^{\mathrm{2}} \alpha}{\left({M}+{m}\mathrm{sin}\:\alpha\mathrm{cos}\:\alpha\right)}}\\\hline\end{array} \\ $$$${a}={g}\mathrm{sin}\:\alpha+{A}\mathrm{cos}\:\alpha−\xi\:\left({g}\mathrm{cos}\:\alpha−{A}\mathrm{sin}\:\alpha\right) \\ $$$${a}=\left({g}\mathrm{sin}\:\alpha+\left(\frac{{mg}\mathrm{cos}\:^{\mathrm{2}} \alpha}{\left({M}+{m}\mathrm{sin}\:\alpha\mathrm{cos}\:\alpha\right)}\right)\mathrm{cos}\:\alpha−\xi\left(\frac{{t}^{\mathrm{2}} \left({g}\mathrm{sin}\:\alpha+{A}\mathrm{cos}\:\alpha\right)}{\left(\mathrm{2}+\xi{t}^{\mathrm{2}} \left({g}\mathrm{cos}\:\alpha−{A}\mathrm{sin}\:\alpha\right)\right.}\right)\left({g}\mathrm{cos}\:\alpha−\frac{{mg}\mathrm{cos}\:^{\mathrm{2}} \alpha}{\left({M}+{m}\mathrm{sin}\:\alpha\mathrm{cos}\:\alpha\right)}\mathrm{sin}\:\alpha\right)\right) \\ $$
Answered by mr W last updated on 20/Oct/25

Commented by fantastic last updated on 20/Oct/25

$${sir}\:{i}\:{think} \\ $$$${A}=\left(\frac{{mg}\mathrm{cos}\:^{\mathrm{2}} \alpha}{{M}+{m}\mathrm{sin}\:\alpha\mathrm{cos}\:\alpha}\right) \\ $$$${and}\: \\ $$$${a}=\left(\frac{{mg}\mathrm{cos}\:^{\mathrm{2}} \alpha}{{M}+{m}\mathrm{sin}\:\alpha\mathrm{cos}\:\alpha}\right)\left(\mathrm{cos}\:\alpha+\mathrm{sin}\:\alpha\right)+{g}\left(\mathrm{sin}\:\alpha−\varphi\frac{\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \mathrm{sin}\:\alpha}{\mathrm{1}+{g}\varphi\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} \mathrm{cos}\:\alpha}\mathrm{cos}\:\alpha\right) \\ $$
Commented by mr W last updated on 21/Oct/25

$${how}\:{can}\:{the}\:{acc}.\:\:{of}\:{the}\:{wedge}\:{be} \\ $$$${constant}?\:{it}\:{must}\:{be}\:{a}\:{function} \\ $$$${in}\:{terms}\:{of}\:{x}\:{or}\:{t},\:{i}\:{think}. \\ $$$${at}\:{x}=\mathrm{0}:\:\mu=\mathrm{0},\:\:{there}\:{is}\:{no}\:{friction}, \\ $$$${the}\:{A}\:{should}\:{be}\:{maximum}.\:{due}\:{to} \\ $$$${the}\:{increasing}\:{of}\:{friction},\:{A}\:{is} \\ $$$${getting}\:{smaller}.\:{anyway}\:{A}\neq{constant}. \\ $$
Commented by fantastic last updated on 21/Oct/25

$${trying}\:{to}\:{post}\:{my}\:{approach} \\ $$
Answered by fantastic last updated on 21/Oct/25

Commented by fantastic last updated on 21/Oct/25

$${retry}… \\ $$
Commented by fantastic last updated on 21/Oct/25

Commented by mr W last updated on 21/Oct/25

$${wrong}! \\ $$$${also}\:{friction}\:{force}\:{acts}\:{on}\:{the}\:{wedge}! \\ $$