Question Number 225382 by Osefavour last updated on 23/Oct/25

$$\mathrm{Been}\:\mathrm{a}\:\mathrm{while}\:\mathrm{guys} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{xln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Answered by peace2 last updated on 24/Oct/25

$${A}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx};{B}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} };{A}+{B}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{t}\right)}{\mathrm{1}+{t}}{dt}\:{let}\:\mathrm{1}+{t}=\mathrm{2}{z}\Rightarrow{A}+{B}=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{2}−\mathrm{2}{z}\right)}{\mathrm{2}{z}}.\mathrm{2}{dz} \\ $$$$=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{2}\right)}{{z}}{dz}+\frac{{ln}\left(\mathrm{1}−{z}\right)}{{z}}{dz}={ln}^{\mathrm{2}} \left(\mathrm{2}\right)−{Li}_{\mathrm{2}} \left(\mathrm{1}\right)+\mathrm{L}{i}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$={ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{6}}+{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right){p} \\ $$$${B}−{A}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xln}\left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx};{t}=\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\Rightarrow{B}−{A}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}.{ln}\left({t}\right)}{\frac{\mathrm{2}+\mathrm{2}{t}^{\mathrm{2}} }{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }}.\frac{\mathrm{2}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{t}\right){ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}+{t}^{\mathrm{2}} −{t}\left(\mathrm{1}+{t}\right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}\right)}{ln}\left({t}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right)}{\mathrm{1}+{t}}{dt}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tln}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt};{t}^{\mathrm{2}} \rightarrow{t} \\ $$$$=\frac{\mathrm{3}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right)}{\mathrm{1}+{t}}=\frac{\mathrm{3}}{\mathrm{4}}\underset{{n}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} {t}^{{n}} {ln}\left({t}\right){dt} \\ $$$$=\frac{\mathrm{3}}{\mathrm{4}}−\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{3}}{\mathrm{4}}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }=\frac{\mathrm{3}}{\mathrm{4}}\left\{.−\frac{\mathrm{1}}{\mathrm{2}}\zeta\left(\mathrm{2}\right)\right\} \\ $$$$=−\frac{\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{48}} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left({A}+{B}−\left({B}−{A}\right)\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{48}}\right) \\ $$$$\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}−\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{96}}+\frac{{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$