Question Number 225461 by Jyrgen last updated on 26/Oct/25

$${Which}\:{one}\:{is}\:{the}\:{oddest}\:{prime}\:{number}? \\ $$
Answered by Frix last updated on 26/Oct/25
![Obviously 2 [All other primes are odd ⇒ it′s odd for a prime number to be not odd.] Btw it′s true that all square pentangles have exactly 6 vertices.](https://www.tinkutara.com/question/Q225464.png)
$$\mathrm{Obviously}\:\mathrm{2} \\ $$$$\left[\mathrm{All}\:\mathrm{other}\:\mathrm{primes}\:\mathrm{are}\:\mathrm{odd}\:\Rightarrow\:\mathrm{it}'\mathrm{s}\:\mathrm{odd}\:\mathrm{for}\:\mathrm{a}\right. \\ $$$$\left.\mathrm{prime}\:\mathrm{number}\:\mathrm{to}\:\mathrm{be}\:\mathrm{not}\:\mathrm{odd}.\right] \\ $$$$ \\ $$$$\mathrm{Btw}\:\mathrm{it}'\mathrm{s}\:\mathrm{true}\:\mathrm{that}\:\mathrm{all}\:\mathrm{square}\:\mathrm{pentangles}\:\mathrm{have} \\ $$$$\mathrm{exactly}\:\mathrm{6}\:\mathrm{vertices}. \\ $$
Commented by Jyrgen last updated on 31/Oct/25