Question Number 225479 by Lara2440 last updated on 28/Oct/25

$$\mathrm{Let}\:\mathcal{S};\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}^{\mathrm{3}} \:\mathrm{Sphere}\: \\ $$$${Q}\mathrm{1}.\:\mathrm{Find}\:\mathrm{metric}\:\mathrm{tensor}\:\mathrm{g}_{\mu\nu} \: \\ $$$${Q}\mathrm{2}.\:\mathrm{Find}\:\mathrm{Riemann}\:\mathrm{metric}\:\mathrm{tensor}\:{R}_{{jkl}} ^{{i}} \\ $$$${Q}.\mathrm{3}\:\:\mathrm{Find}\:\mathrm{Ricci}\:\mathrm{tensor}\:\mathrm{R}_{\alpha\beta} \\ $$$${Q}.\mathrm{4}\:\:\mathrm{Find}\:\mathrm{Ricci}\:\mathrm{Scalar}\:\mathcal{R} \\ $$$$\mathrm{Christoffel}\:\mathrm{symbol}\:\mathrm{first}\:\mathrm{kind}\: \\ $$$$\Gamma_{\mu\nu\sigma} =\frac{\mathrm{1}}{\mathrm{2}}\left(\partial_{\nu} ^{\:} \mathrm{g}_{\mu\sigma} +\partial_{\sigma} \mathrm{g}_{\mu\nu} −\partial_{\mu} \mathrm{g}_{\nu\sigma} \right) \\ $$$$\mathrm{Christoffel}\:\mathrm{symbol}\:\mathrm{second}\:\mathrm{kind} \\ $$$$\Gamma_{{jk}} ^{{i}} =\mathrm{g}^{{il}} \Gamma_{{ljk}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{g}^{{i}\sigma} \left(\partial_{{j}} ^{\:} \mathrm{g}_{{lk}} +\partial_{{k}} \mathrm{g}_{{lj}} −\partial_{{l}} \mathrm{g}_{{jk}} \right) \\ $$$$\mathrm{Riemann}\:\mathrm{metric}\:\mathrm{tensor} \\ $$$${R}_{{jkl}} ^{{i}} =\partial_{{k}} \Gamma_{{jl}} ^{{i}} −\partial_{{l}} \Gamma_{{jk}} ^{{i}} +\Gamma_{{km}} ^{{i}} \Gamma_{{jl}} ^{{m}} −\Gamma_{{lm}} ^{{i}} \Gamma_{{jk}} ^{{m}} \\ $$
Answered by Lara2440 last updated on 29/Oct/25
