Question Number 225568 by necx122 last updated on 03/Nov/25

$${A}\:{farmer}\:{produces}\:{seeds}\:{in}\:{packets} \\ $$$${for}\:{sale}.\:{The}\:{probability}\:{that}\:{a}\:{seed} \\ $$$${selected}\:{at}\:{random}\:{will}\:{grow}\:{is}\:\mathrm{0}.\mathrm{8}. \\ $$$${If}\:{there}\:{are}\:\mathrm{20}\:{seeds},\:{what}\:{is}\:{the} \\ $$$${probability}\:{that}\:{less}\:{than}\:\mathrm{2}\:{will}\:{not} \\ $$$${grow}? \\ $$
Commented by necx122 last updated on 03/Nov/25

$${Please}\:{help} \\ $$
Answered by mr W last updated on 04/Nov/25

$${the}\:{probability}\:{that}\:{a}\:{seed}\:{grows}\:{is} \\ $$$$\mathrm{0}.\mathrm{8}.\:{that}\:{means}\:{the}\:{probability}\:{that}\: \\ $$$${it}\:{doesn}'{t}\:{grow}\:{is}\:\mathrm{0}.\mathrm{2}. \\ $$$${this}\:{is}\:{a}\:{so}−{called}\:{binomial} \\ $$$${distribution}\:{problem}.\:{the}\:{probability} \\ $$$${that}\:{r}\:{from}\:\mathrm{20}\:{seeds}\:{don}'{t}\:{grow}\:{is} \\ $$$${p}_{{r}} =\begin{pmatrix}{\mathrm{20}}\\{{r}}\end{pmatrix}×\mathrm{0}.\mathrm{2}^{{r}} ×\mathrm{0}.\mathrm{8}^{\mathrm{20}−{r}} \\ $$$$“{less}\:{than}\:\mathrm{2}\:{seeds}''\:{means}\:{zero}\:{seed} \\ $$$${or}\:{one}\:{seed},\:{i}.{e}.\:{r}=\mathrm{0}\:{or}\:\mathrm{1}. \\ $$$${p}_{\mathrm{0}} =\begin{pmatrix}{\mathrm{20}}\\{\mathrm{0}}\end{pmatrix}×\mathrm{0}.\mathrm{2}^{\mathrm{0}} ×\mathrm{0}.\mathrm{8}^{\mathrm{20}} \\ $$$${p}_{\mathrm{1}} =\begin{pmatrix}{\mathrm{20}}\\{\mathrm{1}}\end{pmatrix}×\mathrm{0}.\mathrm{2}^{\mathrm{1}} ×\mathrm{0}.\mathrm{8}^{\mathrm{19}} \\ $$$${totally}\: \\ $$$${p}_{\mathrm{0}} +{p}_{\mathrm{1}} = \\ $$$$\begin{pmatrix}{\mathrm{20}}\\{\mathrm{0}}\end{pmatrix}×\mathrm{0}.\mathrm{2}^{\mathrm{0}} ×\mathrm{0}.\mathrm{8}^{\mathrm{20}} +\begin{pmatrix}{\mathrm{20}}\\{\mathrm{1}}\end{pmatrix}×\mathrm{0}.\mathrm{2}^{\mathrm{1}} ×\mathrm{0}.\mathrm{8}^{\mathrm{19}} \\ $$$$\approx\mathrm{0}.\mathrm{069} \\ $$
Commented by necx122 last updated on 03/Nov/25

$${This}\:{is}\:{really}\:{understandable}.\:{Thank} \\ $$$${you},\:{sir}. \\ $$
Commented by mr W last updated on 03/Nov/25

$${with}\:{pleasure}! \\ $$